skip to main content


Title: Multiconfiguration afocal freeform telescopes

An approach to designing multiconfiguration afocal telescopes is developed and demonstrated. Freeform surfaces are used to maximize the achievable diffraction-limited zoom ratio while staying in a compact volume for a two-position multiconfiguration afocal optical system. The limitations of these systems with three-mirror beam paths are discussed and subsequently overcome by introducing an additional degree of freedom. In a four-mirror beam path system, the goal of a 5x zoom ratio is achieved with a compensated exit pupil and diffraction-limited performance. A significant benefit in optical performance when using freeform surfaces is shown compared to more conventional surface types.

 
more » « less
NSF-PAR ID:
10489719
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
32
Issue:
4
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 6154
Size(s):
["Article No. 6154"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Laser scanning microscopes can be miniaturized for in vivo imaging by substituting optical microelectromechanical system (MEMS) devices in place of larger components. The emergence of multifunctional active optical devices can support further miniaturization beyond direct component replacement because those active devices enable diffraction-limited performance using simpler optical system designs. In this paper, we propose a catadioptric microscope objective lens that features an integrated MEMS device for performing biaxial scanning, axial focus adjustment, and control of spherical aberration. The MEMS-in-the-lens architecture incorporates a reflective MEMS scanner between a low-numerical-aperture back lens group and an aplanatic hyperhemisphere front refractive element to support high-numerical-aperture imaging. We implemented this new optical system using a recently developed hybrid polymer/silicon MEMS three-dimensional scan mirror that features an annular aperture that allows it to be coaxially aligned within the objective lens without the need for a beam splitter. The optical performance of the active catadioptric system is simulated and imaging of hard targets and human cheek cells is demonstrated with a confocal microscope that is based on the new objective lens design.

     
    more » « less
  2. We propose an on-axis deflectometric system for the accurate measurement of freeform surfaces with large slope ranges. A miniature plane mirror is attached on the illumination screen to fold the optical path and achieve the on-axis deflectometric testing. Due to the existence of the miniature folding mirror, the deep-learning method is applied to recover the missing surface data in a single measurement. Low sensitivity to the calibration error of system geometry and high testing accuracy can be achieved with the proposed system. The feasibility and accuracy of the proposed system have been validated. The system is low in cost and simple in configuration, and it provides a feasible way for the flexible and general testing of freeform surfaces, with a significant potential of the application in on-machine testing.

     
    more » « less
  3. Winston, Roland ; Yablonovitch, Eli (Ed.)
    Abstract Dynamic illumination can improve functionality for multiple application areas, including lighting, AR/VR, automotive, medicine, and security. Some applications require a uniform illumination pattern of continuously variable divergence or size for improved functionality. Such dynamic functionality has previously been achieved, for example, by longitudinally moving a source relative to a curved reflector, which can result poor uniformity, or through zoom configurations in which the longitudinal distances between lenses in the system are dynamically adjusted. Advances in high precision manufacturing methods such as diamond machining have facilitated the practical implementation of freeform optical components, enabling new design approaches and concepts for illumination systems. In this paper, we explore the use of arrays of transmissive pairs of freeform surfaces to enable efficient and uniform dynamic illumination in a compact package. This work builds on the Alvarez lens concept, in which a pair of transmissive XY-polynomial freeform surfaces generates variable optical power through lateral relative shifts. Design approaches and simulation results are presented. 
    more » « less
  4. When conducting interferometric tests of freeform optical surfaces, additional optical components, such as computer-generated holograms or deformable mirrors, are often necessary to achieve a null or quasi-null. These additional optical components increase both the cost and the difficulty of interferometric tests of freeform optical surfaces. In this paper, designs using off-axis segments of conics as base surfaces for freeforms are explored. These off-axis conics are more complex base surfaces than typically-used base spheres but remain null-testable. By leveraging off-axis conics in conjunction with additional orthogonal polynomial departures, designs were found with up to an order-of-magnitude of improvement in testability estimates relative to designs that use base spheres. Two design studies, a three-mirror telescope and a wide field-of-view four-mirror telescope, demonstrate the impact of using off-axis conics as the base surface.

     
    more » « less
  5. null (Ed.)
    The demand for high-resolution optical systems with a compact form factor, such as augmented reality displays, sensors, and mobile cameras, requires creating new optical component architectures. Advances in the design and fabrication of freeform optics and metasurfaces make them potential solutions to address the previous needs. Here, we introduce the concept of a metaform—an optical surface that integrates the combined benefits of a freeform optic and a metasurface into a single optical component. We experimentally realized a miniature imager using a metaform mirror. The mirror is fabricated via an enhanced electron beam lithography process on a freeform substrate. The design degrees of freedom enabled by a metaform will support a new generation of optical systems. 
    more » « less