skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Uncovering the Holocene roots of contemporary disease-scapes: bringing archaeology into One Health

The accelerating pace of emerging zoonotic diseases in the twenty-first century has motivated cross-disciplinary collaboration on One Health approaches, combining microbiology, veterinary and environmental sciences, and epidemiology for outbreak prevention and mitigation. Such outbreaks are often caused by spillovers attributed to human activities that encroach on wildlife habitats and ecosystems, such as land use change, industrialized food production, urbanization and animal trade. While the origin of anthropogenic effects on animal ecology and biogeography can be traced to the Late Pleistocene, the archaeological record—a long-term archive of human–animal–environmental interactions—has largely been untapped in these One Health approaches, thus limiting our understanding of these dynamics over time. In this review, we examine how humans, as niche constructors, have facilitated new host species and ‘disease-scapes’ from the Late Pleistocene to the Anthropocene, by viewing zooarchaeological, bioarchaeological and palaeoecological data with a One Health perspective. We also highlight how new biomolecular tools and advances in the ‘-omics’ can be holistically coupled with archaeological and palaeoecological reconstructions in the service of studying zoonotic disease emergence and re-emergence.

 
more » « less
Award ID(s):
2142133
PAR ID:
10490466
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Royal Society
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
290
Issue:
2012
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A comprehensive approach to integrated one health surveillance and response

    Surveillance data plays a crucial role in understanding and responding to emerging infectious diseases; here, we learn why adopting a One Health surveillance approach to EIDs can help to protect human, animal, and environmental health. Over 75% of emerging infectious diseases (EIDs) affecting humans are zoonotic diseases with animal hosts, which can be transmitted by waterborne, foodborne, vector-borne, or air-borne pathways. (7) Early detection is important and allows for a rapid response through preventive and control measures. However, early detection of EIDs is hindered by several obstacles, such as climate change, which can alter habitats, leading to shifts in the distribution of disease- carrying vectors like mosquitoes and ticks. This can result in diseases such as malaria, dengue fever, and Lyme disease becoming more common in areas with established transmission or spreading to new areas entirely. (4) Environmental changes such as deforestation and urbanization disrupt ecosystems, increasing the likelihood of zoonotic disease spillover from wildlife to humans. In addition to working at the interface of these changes, detection and tracking of EIDs also requires sharing and standardization of complex data and integrating processes across different regions and health systems.

     
    more » « less
  2. Abstract Background

    Understanding how and why people interact with animals is important for the prevention and control of zoonoses. To date, studies have primarily focused on the most visible forms of human-animal contact (e.g., hunting and consumption), thereby blinding One Health researchers and practitioners to the broader range of human-animal interactions that can serve as cryptic sources of zoonotic diseases. Zootherapy, the use of animal products for traditional medicine and cultural practices, is widespread and can generate opportunities for human exposure to zoonoses. Existing research examining zootherapies omits details necessary to adequately assess potential zoonotic risks.

    Methods

    We used a mixed-methods approach, combining quantitative and qualitative data from questionnaires, key informant interviews, and field notes to examine the use of zootherapy in nine villages engaged in wildlife hunting, consumption, and trade in Cross River State, Nigeria. We analyzed medicinal and cultural practices involving animals from a zoonotic disease perspective, by including details of animal use that may generate pathways for zoonotic transmission. We also examined the sociodemographic, cultural, and environmental contexts of zootherapeutic practices that can further shape the nature and frequency of human-animal interactions.

    Results

    Within our study population, people reported using 44 different animal species for zootherapeutic practices, including taxonomic groups considered to be “high risk” for zoonoses and threatened with extinction. Variation in use of animal parts, preparation norms, and administration practices generated a highly diverse set of zootherapeutic practices (n = 292) and potential zoonotic exposure risks. Use of zootherapy was patterned by demographic and environmental contexts, with zootherapy more commonly practiced by hunting households (OR = 2.47,p < 0.01), and prescriptions that were gender and age specific (e.g., maternal and pediatric care) or highly seasonal (e.g., associated with annual festivals and seasonal illnesses). Specific practices were informed by species availability and theories of healing (i.e., “like cures like” and sympathetic healing and magic) that further shaped the nature of human-animal interactions via zootherapy.

    Conclusions

    Epidemiological investigations of zoonoses and public health interventions that aim to reduce zoonotic exposures should explicitly consider zootherapy as a potential pathway for disease transmission and consider the sociocultural and environmental contexts of their use in health messaging and interventions.

     
    more » « less
  3. Zoonotic diseases are infectious diseases of humans caused by pathogens that are shared between humans and other vertebrate animals. Previously, pristine natural areas with high biodiversity were seen as likely sources of new zoonotic pathogens, suggesting that biodiversity could have negative impacts on human health. At the same time, biodiversity has been recognized as potentially benefiting human health by reducing the transmission of some pathogens that have already established themselves in human populations. These apparently opposing effects of biodiversity in human health may now be reconcilable. Recent research demonstrates that some taxa are much more likely to be zoonotic hosts than others are, and that these animals often proliferate in human-dominated landscapes, increasing the likelihood of spillover. In less-disturbed areas, however, these zoonotic reservoir hosts are less abundant and nonreservoirs predominate. Thus, biodiversity loss appears to increase the risk of human exposure to both new and established zoonotic pathogens. This new synthesis of the effects of biodiversity on zoonotic diseases presents an opportunity to articulate the next generation of research questions that can inform management and policy. Future studies should focus on collecting and analyzing data on the diversity, abundance, and capacity to transmit of the taxa that actually share zoonotic pathogens with us. To predict and prevent future epidemics, researchers should also focus on how these metrics change in response to human impacts on the environment, and how human behaviors can mitigate these effects. Restoration of biodiversity is an important frontier in the management of zoonotic disease risk. 
    more » « less
  4. Helminths are parasites that cause disease at considerable cost to public health and present a risk for emergence as novel human infections. Although recent research has elucidated characteristics conferring a propensity to emergence in other parasite groups (e.g. viruses), the understanding of factors associated with zoonotic potential in helminths remains poor. We applied an investigator-directed learning algorithm to a global dataset of mammal helminth traits to identify factors contributing to spillover of helminths from wild animal hosts into humans. We characterized parasite traits that distinguish between zoonotic and non-zoonotic species with 91% accuracy. Results suggest that helminth traits relating to transmission (e.g. definitive and intermediate hosts) and geography (e.g. distribution) are more important to discriminating zoonotic from non-zoonotic species than morphological or epidemiological traits. Whether or not a helminth causes infection in companion animals (cats and dogs) is the most important predictor of propensity to cause human infection. Finally, we identified helminth species with high modelled propensity to cause zoonosis (over 70%) that have not previously been considered to be of risk. This work highlights the importance of prioritizing studies on the transmission of helminths that infect pets and points to the risks incurred by close associations with these animals. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’. 
    more » « less
  5. Abstract

    Market integration (MI), or the shift from subsistence to market-based livelihoods, profoundly influences health, yet its impacts on infectious diseases remain underexplored. Here, we synthesize the current understanding of MI and infectious disease to stimulate more research, specifically aiming to leverage concepts and tools from disease ecology and related fields to generate testable hypotheses. Embracing a One Health perspective, we examine both human-to-human and zoonotic transmission pathways in their environmental contexts to assess how MI alters infectious disease exposure and susceptibility in beneficial, detrimental and mixed ways. For human-to-human transmission, we consider how markets expand contact networks in ways that facilitate infectious disease transmission while also increasing access to hygiene products and housing materials that likely reduce infections. For zoonotic transmission, MI influences exposures to pathogens through agricultural intensification and other market-driven processes that may increase or decrease human encounters with disease reservoirs or vectors in their shared environments. We also consider how MI-driven changes in noncommunicable diseases affect immunocompetence and susceptibility to infectious disease. Throughout, we identify statistical, survey and laboratory methods from ecology and the social sciences that will advance interdisciplinary research on MI and infectious disease.

     
    more » « less