skip to main content


This content will become publicly available on December 6, 2024

Title: Uncovering the Holocene roots of contemporary disease-scapes: bringing archaeology into One Health

The accelerating pace of emerging zoonotic diseases in the twenty-first century has motivated cross-disciplinary collaboration on One Health approaches, combining microbiology, veterinary and environmental sciences, and epidemiology for outbreak prevention and mitigation. Such outbreaks are often caused by spillovers attributed to human activities that encroach on wildlife habitats and ecosystems, such as land use change, industrialized food production, urbanization and animal trade. While the origin of anthropogenic effects on animal ecology and biogeography can be traced to the Late Pleistocene, the archaeological record—a long-term archive of human–animal–environmental interactions—has largely been untapped in these One Health approaches, thus limiting our understanding of these dynamics over time. In this review, we examine how humans, as niche constructors, have facilitated new host species and ‘disease-scapes’ from the Late Pleistocene to the Anthropocene, by viewing zooarchaeological, bioarchaeological and palaeoecological data with a One Health perspective. We also highlight how new biomolecular tools and advances in the ‘-omics’ can be holistically coupled with archaeological and palaeoecological reconstructions in the service of studying zoonotic disease emergence and re-emergence.

 
more » « less
Award ID(s):
2142133
NSF-PAR ID:
10490466
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Royal Society
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
290
Issue:
2012
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Understanding how and why people interact with animals is important for the prevention and control of zoonoses. To date, studies have primarily focused on the most visible forms of human-animal contact (e.g., hunting and consumption), thereby blinding One Health researchers and practitioners to the broader range of human-animal interactions that can serve as cryptic sources of zoonotic diseases. Zootherapy, the use of animal products for traditional medicine and cultural practices, is widespread and can generate opportunities for human exposure to zoonoses. Existing research examining zootherapies omits details necessary to adequately assess potential zoonotic risks.

    Methods

    We used a mixed-methods approach, combining quantitative and qualitative data from questionnaires, key informant interviews, and field notes to examine the use of zootherapy in nine villages engaged in wildlife hunting, consumption, and trade in Cross River State, Nigeria. We analyzed medicinal and cultural practices involving animals from a zoonotic disease perspective, by including details of animal use that may generate pathways for zoonotic transmission. We also examined the sociodemographic, cultural, and environmental contexts of zootherapeutic practices that can further shape the nature and frequency of human-animal interactions.

    Results

    Within our study population, people reported using 44 different animal species for zootherapeutic practices, including taxonomic groups considered to be “high risk” for zoonoses and threatened with extinction. Variation in use of animal parts, preparation norms, and administration practices generated a highly diverse set of zootherapeutic practices (n = 292) and potential zoonotic exposure risks. Use of zootherapy was patterned by demographic and environmental contexts, with zootherapy more commonly practiced by hunting households (OR = 2.47,p < 0.01), and prescriptions that were gender and age specific (e.g., maternal and pediatric care) or highly seasonal (e.g., associated with annual festivals and seasonal illnesses). Specific practices were informed by species availability and theories of healing (i.e., “like cures like” and sympathetic healing and magic) that further shaped the nature of human-animal interactions via zootherapy.

    Conclusions

    Epidemiological investigations of zoonoses and public health interventions that aim to reduce zoonotic exposures should explicitly consider zootherapy as a potential pathway for disease transmission and consider the sociocultural and environmental contexts of their use in health messaging and interventions.

     
    more » « less
  2. null (Ed.)
    Existing collaborations among public health practitioners, veterinarians, and ecologists do not sufficiently consider illegal wildlife trade in their surveillance, biosafety, and security (SB&S) efforts even though the risks to health and biodiversity from these threats are significant. We highlight multiple cases to illustrate the risks posed by existing gaps in understanding the intersectionality of the illegal wildlife trade and zoonotic disease transmission. We argue for more integrative science in support of decision-making using the One Health approach. Opportunities abound to apply transdisciplinary science to sustainable wildlife trade policy and programming, such as combining on-the-ground monitoring of health, environmental, and social conditions with an understanding of the operational and spatial dynamics of illicit wildlife trade. We advocate for (1) a surveillance sample management system for enhanced diagnostic efficiency in collaboration with diverse and local partners that can help establish new or link existing surveillance networks, outbreak analysis, and risk mitigation strategies; (2) novel analytical tools and decision support models that can enhance self-directed local livelihoods by addressing monitoring, detection, prevention, interdiction, and remediation; (3) enhanced capacity to promote joint SB&S efforts that can encourage improved human and animal health, timely reporting, emerging disease detection, and outbreak response; and, (4) enhanced monitoring of illicit wildlife trade and supply chains across the heterogeneous context within which they occur. By integrating more diverse scientific disciplines, and their respective scientists with indigenous people and local community insight and risk assessment data, we can help promote a more sustainable and equitable wildlife trade. 
    more » « less
  3. COVID-19 is the latest zoonotic RNA virus epidemic of concern. Learning how it began and spread will help to determine how to reduce the risk of future events. We review major RNA virus outbreaks since 1967 to identify common features and opportunities to prevent emergence, including ancestral viral origins in birds, bats, and other mammals; animal reservoirs and intermediate hosts; and pathways for zoonotic spillover and community spread, leading to local, regional, or international outbreaks. The increasing scientific evidence concerning the origins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is most consistent with a zoonotic origin and a spillover pathway from wildlife to people via wildlife farming and the wildlife trade. We apply what we know about these outbreaks to identify relevant, feasible, and implementable interventions. We identify three primary targets for pandemic prevention and preparedness: first, smart surveillance coupled with epidemiological risk assessment across wildlife–livestock–human (One Health) spillover interfaces; second, research to enhance pandemic preparedness and expedite development of vaccines and therapeutics; and third, strategies to reduce underlying drivers of spillover risk and spread and reduce the influence of misinformation. For all three, continued efforts to improve and integrate biosafety and biosecurity with the implementation of a One Health approach are essential. We discuss new models to address the challenges of creating an inclusive and effective governance structure, with the necessary stable funding for cross-disciplinary collaborative research. Finally, we offer recommendations for feasible actions to close the knowledge gaps across the One Health continuum and improve preparedness and response in the future. 
    more » « less
  4. Helminths are parasites that cause disease at considerable cost to public health and present a risk for emergence as novel human infections. Although recent research has elucidated characteristics conferring a propensity to emergence in other parasite groups (e.g. viruses), the understanding of factors associated with zoonotic potential in helminths remains poor. We applied an investigator-directed learning algorithm to a global dataset of mammal helminth traits to identify factors contributing to spillover of helminths from wild animal hosts into humans. We characterized parasite traits that distinguish between zoonotic and non-zoonotic species with 91% accuracy. Results suggest that helminth traits relating to transmission (e.g. definitive and intermediate hosts) and geography (e.g. distribution) are more important to discriminating zoonotic from non-zoonotic species than morphological or epidemiological traits. Whether or not a helminth causes infection in companion animals (cats and dogs) is the most important predictor of propensity to cause human infection. Finally, we identified helminth species with high modelled propensity to cause zoonosis (over 70%) that have not previously been considered to be of risk. This work highlights the importance of prioritizing studies on the transmission of helminths that infect pets and points to the risks incurred by close associations with these animals. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’. 
    more » « less
  5. Abstract

    Zoonotic diseases represent 75% of emerging infectious diseases worldwide, and their emergence is mainly attributed to human‐driven changes in landscapes. Land use change, especially the conversion of natural areas to agricultural use, has the potential to impact hosts and vector dynamics, affecting pathogen transmission risk. While these links are becoming better understood, very few studies have investigated the opposite question—how native vegetation restoration affects zoonotic disease outbreaks.

    We reviewed the existing evidence linking native vegetation restoration with zoonotic transmission risk, identified knowledge gaps, and, by focusing on tropical areas, proposed forest restoration strategies that could help in limiting the spread of zoonotic diseases.

    We identified a large gap in information on the effects of native vegetation restoration on zoonotic diseases, especially within tropical regions. In addition, the few studies that exist do not consider environmental aspects that can affect the outcomes of restoration on disease risk, such as the land use history and landscape structural characteristics (as composition and configuration of native habitats). Our conceptual framework raises two important points: (1) the effects of forest restoration may depend on the context of the existing landscape, especially the percentage of native vegetation existing at the beginning of the restoration; and (2) these effects will also be dependent on the spatial arrangement of the restored area within the existing landscape. Furthermore, we propose important topics to be studied in the coming years to integrate zoonotic disease risk as a criterion in restoration planning.

    Synthesis and application. Our results contribute to a more comprehensive forest restoration planning, comprising multiple ecosystem services and resulting in healthier landscapes for both people and nature. Our framework could be integrated into the post‐2020 global biodiversity framework targets.

     
    more » « less