skip to main content


Title: North Atlantic Response to Observed North Atlantic Oscillation Surface Heat Flux in Three Climate Models
Abstract

We investigate how the ocean responds to 10-yr persistent surface heat flux forcing over the subpolar North Atlantic (SPNA) associated with the observed winter NAO in three CMIP6-class coupled models. The experiments reveal a broadly consistent ocean response to the imposed NAO forcing. Positive NAO forcing produces anomalously dense water masses in the SPNA, increasing the southward lower (denser) limb of the Atlantic meridional overturning circulation (AMOC) in density coordinates. The southward propagation of the anomalous dense water generates a zonal pressure gradient overlying the models’ North Atlantic Current that enhances the upper (lighter) limb of the density-space AMOC, increasing the heat and salt transport into the SPNA. However, the amplitude of the thermohaline process response differs substantially between the models. Intriguingly, the anomalous dense-water formation is not primarily driven directly by the imposed flux anomalies, but rather dominated by changes in isopycnal outcropping area and associated changes in surface water mass transformation (WMT) due to the background surface heat fluxes. The forcing initially alters the outcropping area in dense-water formation regions, but WMT due to the background surface heat fluxes through anomalous outcropping area decisively controls the total dense-water formation response and can explain the intermodel amplitude difference. Our study suggests that coupled models can simulate consistent mechanisms and spatial patterns of decadal SPNA variability when forced with the same anomalous buoyancy fluxes, but the amplitude of the response depends on the background states of the models.

 
more » « less
NSF-PAR ID:
10490708
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
37
Issue:
5
ISSN:
0894-8755
Format(s):
Medium: X Size: p. 1777-1796
Size(s):
["p. 1777-1796"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Wintertime convection in the North Atlantic Ocean is a key component of the global climate as it produces dense waters at high latitudes that flow equatorward as part of the Atlantic Meridional Overturning Circulation (AMOC). Recent work has highlighted the dominant role of the Irminger and Iceland basins in the production of North Atlantic Deep Water. Dense water formation in these basins is mainly explained by buoyancy forcing that transforms surface waters to the deep waters of the AMOC lower limb. Air-sea fluxes and the ocean surface density field are both key determinants of the buoyancy-driven transformation. We analyze these contributions to the transformation in order to better understand the connection between atmospheric forcing and the densification of surface water. More precisely, we study the impact of air-sea fluxes and the ocean surface density field on the transformation of subpolar mode water (SPMW) in the Iceland Basin, a water mass that “pre-conditions” dense water formation downstream. Analyses using 40 years of observations (1980–2019) reveal that the variance in SPMW transformation is mainly influenced by the variance in density at the ocean surface. This surface density is set by a combination of advection, wind-driven upwelling and surface fluxes. Our study shows that the latter explains ∼ 30 % of the variance in outcrop area as expressed by the surface area between the outcropped SPMW isopycnals. The key role of the surface density in SPMW transformation partly explains the unusually large SPMW transformation in winter 2014–2015 over the Iceland Basin. 
    more » « less
  2. Abstract

    Water mass transformation (WMT) in the North Atlantic plays a key role in driving the Atlantic Meridional Overturning Circulation (AMOC) and its variability. Here, we analyze subpolar North Atlantic WMT in high‐ and low‐resolution versions of the Community Earth System Model version 1 (CESM1) and investigate whether differences in resolution and climatological WMT impact low‐frequency AMOC variability and the atmospheric response to this variability. We find that high‐resolution simulations reproduce the WMT found in a reanalysis‐forced high‐resolution ocean simulation more accurately than low‐resolution simulations. We also find that the low‐resolution simulations, including one forced with the same atmospheric reanalysis data, have larger biases in surface heat fluxes, sea‐surface temperatures, and salinities compared to the high‐resolution simulations. Despite these major climatological differences, the mechanisms of low‐frequency AMOC variability are similar in the high‐ and low‐resolution versions of CESM1. The Labrador Sea WMT plays a major role in driving AMOC variability, and a similar North Atlantic Oscillation‐like sea‐level pressure pattern leads AMOC changes. However, the high‐resolution simulation shows a pronounced atmospheric response to the AMOC variability not found in the low‐resolution version. The consistent role of Labrador Sea WMT in low‐frequency AMOC variability across high‐ and low‐resolution coupled simulations, including a simulation which accurately reproduces the WMT found in an atmospheric‐reanalysis‐forced high‐resolution ocean simulation, suggests that the mechanisms may be similar in nature.

     
    more » « less
  3. We explore the mechanisms by which Arctic sea ice decline affects the Atlantic meridional overturning circulation (AMOC) in a suite of numerical experiments perturbing the Arctic sea ice radiative budget within a fully coupled climate model. The imposed perturbations act to increase the amount of heat available to melt ice, leading to a rapid Arctic sea ice retreat within 5 years after the perturbations are activated. In response, the AMOC gradually weakens over the next ~100 years. The AMOC changes can be explained by the accumulation in the Arctic and subsequent downstream propagation to the North Atlantic of buoyancy anomalies controlled by temperature and salinity. Initially, during the first decade or so, the Arctic sea ice loss results in anomalous positive heat and salinity fluxes in the subpolar North Atlantic, inducing positive temperature and salinity anomalies over the regions of oceanic deep convection. At first, these anomalies largely compensate one another, leading to a minimal change in upper ocean density and deep convection in the North Atlantic. Over the following years, however, more anomalous warm water accumulates in the Arctic and spreads to the North Atlantic. At the same time, freshwater that accumulates from seasonal sea ice melting over most of the upper Arctic Ocean also spreads southward, reaching as far as south of Iceland. These warm and fresh anomalies reduce upper ocean density and suppress oceanic deep convection. The thermal and haline contributions to these buoyancy anomalies, and therefore to the AMOC slowdown during this period, are found to have similar magnitudes. We also find that the related changes in horizontal wind-driven circulation could potentially push freshwater away from the deep convection areas and hence strengthen the AMOC, but this effect is overwhelmed by mean advection.

     
    more » « less
  4. Abstract

    The Atlantic Meridional Overturning Circulation (AMOC), a key mechanism in the climate system, delivers warm and salty waters from the subtropical gyre to the subpolar gyre and Nordic Seas, where they are transformed into denser waters flowing southward in the lower AMOC limb. The prevailing hypothesis is that dense waters formed in the Labrador and Nordic Seas are the sources for the AMOC lower limb. However, recent observations reveal that convection in the Labrador Sea contributes minimally to the total overturning of the subpolar gyre. In this study, we show that the AMOC is instead primarily composed of waters formed in the Nordic Seas and Irminger and Iceland basins. A first direct estimate of heat and freshwater fluxes over these basins demonstrates that buoyancy forcing during the winter months can almost wholly account for the dense waters of the subpolar North Atlantic that are exported as part of the AMOC.

     
    more » « less
  5. null (Ed.)
    Abstract Climate models consistently project (i) a decline in the formation of North Atlantic Deep Water (NADW) and (ii) a strengthening of the Southern Hemisphere westerly winds in response to anthropogenic greenhouse gas forcing. These two processes suggest potentially conflicting tendencies of the Atlantic meridional overturning circulation (AMOC): a weakening AMOC due to changes in the North Atlantic but a strengthening AMOC due to changes in the Southern Ocean. Here we focus on the transient evolution of the global ocean overturning circulation in response to a perturbation to the NADW formation rate. We propose that the adjustment of the Indo-Pacific overturning circulation is a critical component in mediating AMOC changes. Using a hierarchy of ocean and climate models, we show that the Indo-Pacific overturning circulation provides the first response to AMOC changes through wave processes, whereas the Southern Ocean overturning circulation responds on longer (centennial to millennial) time scales that are determined by eddy diffusion processes. Changes in the Indo-Pacific overturning circulation compensate AMOC changes, which allows the Southern Ocean overturning circulation to evolve independently of the AMOC, at least over time scales up to many decades. In a warming climate, the Indo-Pacific develops an overturning circulation anomaly associated with the weakening AMOC that is characterized by a northward transport close to the surface and a southward transport in the deep ocean, which could effectively redistribute heat between the basins. Our results highlight the importance of interbasin exchange in the response of the global ocean overturning circulation to a changing climate. 
    more » « less