skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sex Differences in Stress Response: Classical Mechanisms and Beyond
Abstract:Neuropsychiatric disorders, which are associated with stress hormone dysregulation, occurat different rates in men and women. Moreover, nowadays, preclinical and clinical evidence demonstratesthat sex and gender can lead to differences in stress responses that predispose males andfemales to different expressions of similar pathologies. In this curated review, we focus on what isknown about sex differences in classic mechanisms of stress response, such as glucocorticoid hormonesand corticotrophin-releasing factor (CRF), which are components of the hypothalamicpituitary-adrenal (HPA) axis. Then, we present sex differences in neurotransmitter levels, such as serotonin,dopamine, glutamate and GABA, as well as indices of neurodegeneration, such as amyloid βand Tau. Gonadal hormone effects, such as estrogens and testosterone, are also discussed throughoutthe review. We also review in detail preclinical data investigating sex differences caused by recentlyrecognizedregulators of stress and disease, such as the immune system, genetic and epigenetic mechanisms,as well neurosteroids. Finally, we discuss how understanding sex differences in stress responses,as well as in pharmacology, can be leveraged into novel, more efficacious therapeutics forall. Based on the supporting evidence, it is obvious that incorporating sex as a biological variable intopreclinical research is imperative for the understanding and treatment of stress-related neuropsychiatricdisorders, such as depression, anxiety and Alzheimer’s disease.  more » « less
Award ID(s):
2313253
PAR ID:
10490774
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Current Neuropharmacology
Date Published:
Journal Name:
Current Neuropharmacology
Volume:
22
Issue:
3
ISSN:
1570-159X
Page Range / eLocation ID:
475 to 494
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Glutamatergic dysfunction has been implicated in the pathophysiology of multiple conditions including epilepsy, chronic pain, post-traumatic stress disorder (PTSD), and premenstrual dysphoric disorder (PMDD), raising interest in potential ways of modifying glutamate in the nervous system. Emerging research has suggested an interactive effect between sex hormones and glutamatergic neurotransmission. The objective of this paper was to review existing literature on the mechanism of interaction between sex hormones and glutamatergic neurotransmission, as well as to explore what is known about these interactions in various neurological and psychiatric conditions. This paper summarizes knowledge regarding mechanisms for these effects, and glutamatergic response to direct modulation of sex hormones. Research articles were identified via scholarly databases including PubMed, Google Scholar, and ProQuest. Articles were included if they were original research from peer-reviewed academic journals that dealt with glutamate, estrogen, progesterone, testosterone, neurosteroids, glutamate and sex hormone interactions, or the potential impact of glutamate and sex hormone interactions in the following conditions: chronic pain, epilepsy, PTSD, and PMDD. Current evidence suggests that sex hormones can directly modulate glutamatergic neurotransmission, with specific protective effects against excitotoxicity noted for estrogens. An effect of monosodium glutamate consumption on sex hormone levels has also been demonstrated, suggesting a possible bidirectional effect. Overall, there is a good deal of evidence suggesting a role for sex hormones, and specifically for estrogens, in the modulation of glutamatergic neurotransmission. 
    more » « less
  2. Many animals differentially express behaviours across the annual cycle as life stages are coordinated with seasonal environmental conditions. Understanding of the mechanistic basis of such seasonal changes in behaviour has traditionally focused on the role of changes in circulating hormone levels. However, it is increasingly apparent that other endocrine regulation mechanisms such as changes in local hormone synthesis and receptor abundance also play a role. Here I review what is known about seasonal changes in steroid hormone receptor abundance in relation to seasonal behaviour in vertebrates. I find that there is widespread, though not ubiquitous, seasonal variation in the expression of steroid hormone receptors in the brain, with such variation being best documented in association with courtship, mating and aggression. The most common pattern of seasonal variation is for there to be upregulation of sex steroid receptors with the expression of courtship and mating behaviours, when circulating hormone levels are also high. Less well-documented are cases in which seasonal increases in receptor expression could compensate for low circulating hormone levels or seasonal downregulation that could serve a protective function. I conclude by identifying important directions for future research. 
    more » « less
  3. AbstractSummit disease, in which infected hosts seek heights (gravitropism), first noted in modern times by nineteenth-century naturalists, has been shown to be induced by disparate pathogens ranging from viruses to fungi. Infection results in dramatic changes in normal activity patterns, and such parasite manipulation of host behaviors suggests a strong selection for convergent outcomes albeit evolved via widely divergent mechanisms. The two best-studied examples involve a subset of viral and fungal pathogens of insects that induce “summiting” in infected hosts. Summiting presumably functions as a means for increasing the dispersal of the pathogen, thus significantly increasing fitness. Here, we review current advances in our understanding of viral- and fungal-induced summit disease and the host behavioral manipulation involved. Viral genes implicated in this process include a host hormone-targeting ecdysteroid UDP-glucosyltransferase (apparently essential for mediating summit disease induced by some viruses but not all) and a protein tyrosine phosphatase, with light dependance implicated. For summit disease-causing fungi, though much remains obscure, targeting of molting, circadian rhythms, sleep, and responses to light patterns appear involved. Targeting of host neuronal pathways by summit-inducing fungi also appears to involve the production of effector molecules and secondary metabolites that affect host muscular, immune, and/or neurological processes. It is hypothesized that host brain structures, particularly Mushroom Bodies (no relation to the fungus itself), important for olfactory association learning and control of locomotor activity, are critical targets for mediating summiting during infection. This phenomenon expands the diversity of microbial pathogen-interactions and host dynamics. Key points•Summit disease or height seeking (gravitropism) results from viral and fungal pathogens manipulating insect host behaviors presumably to increase pathogen dispersal.•Insect baculoviruses and select fungal pathogens exhibit convergent evolution in host behavioral manipulation but use disparate molecular mechanisms.•Targets for affecting host behavior include manipulation of host hormones, feeding, locomotion, and immune, circadian, and neurological pathways. 
    more » « less
  4. Abstract RAF-like kinases, members of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, are central integrators of external and internal signals in plant stress responses and growth regulation. These kinases mediate signaling through multiple hormone pathways, including abscisic acid-dependent and -independent pathways, ethylene signaling, and rapid auxin responses. Unlike typical MAPKKKs that function through kinase cascades, RAF-like kinases primarily employ direct phosphorylation of downstream targets and dynamic subcellular localization to mediate specific physiological responses. Here, we review the emerging roles of RAF-like kinases in Arabidopsis thaliana, highlighting their integrative functions in hormone signaling, stress responses, and growth control. The complex interplay between different RAF-like kinase subgroups and their diverse cellular targets underscores the intricate regulatory mechanisms plants have evolved to coordinate environmental responses with development. 
    more » « less
  5. In utero exposure to per- and polyfluoroalkyl substances (PFAS) presents significant health concerns, primarily through their role in inducing epigenetic modifications that have lasting consequences. This review aims to elucidate the impact of prenatal PFAS exposure on epigenetic mechanisms, including DNA methylation, histone modification, and non-coding RNA regulation, focusing on developmental and long-term health outcomes. The review synthesizes findings from various studies that link PFAS exposure to alterations in DNA methylation in fetal tissues, such as changes in the methylation of genes like IGF2 and MEST, which are linked to disruptions in growth, neurodevelopment, immune function, and metabolic regulation, potentially increasing the risk of diseases such as diabetes and obesity. We also highlight the compound-specific effects of different PFAS, such as PFOS and PFOA, each showing unique impacts on epigenetic profiles, suggesting varied health risks. Special attention is given to hormonal disruption, oxidative stress, and changes in histone-modifying enzymes such as histone acetyltransferases (HATs) and deacetylases (HDACs), which are pathways through which PFAS influence fetal development. Additionally, we discuss PFAS-induced epigenetic changes in placental tissues, which can alter fetal nutrient supply and hormone regulation. Despite accumulating evidence, significant knowledge gaps remain, particularly regarding the persistence of these changes across the lifespan and potential sex-specific susceptibilities. We explore how advancements in epigenome-wide association studies could bridge these gaps, providing a robust framework for linking prenatal environmental exposures to lifetime health outcomes. Future research directions and regulatory strategies are also discussed, emphasizing the need for intervention to protect vulnerable populations from these environmental pollutants. 
    more » « less