Diffusiophoresis is the spontaneous movement of colloidal particles in a concentration gradient of solutes. As a small-scale phenomenon that harnesses energy from concentration gradients, diffusiophoresis may prove useful for passively manipulating particles in lab-on-a-chip applications as well as configurations involving interfaces. Though naturally occurring ions are often multivalent, experimental studies of diffusiophoresis have been mostly limited to monovalent electrolytes. In this work, we investigate the motion of negatively charged polystyrene particles in one-dimensional salt gradients for a variety of multivalent electrolytes. We develop a one-dimensional model and obtain good agreement between our experimental and modeling results with no fitting parameters. Our results indicate that the ambipolar diffusivity, which is dependent on the valence combination of cations and anions, dictates the speed of the diffusiophoretic motion of the particles by controlling the time scale at which the electrolyte concentration evolves. In addition, the ion valences also modify the electrophoretic and chemiphoretic contributions to the diffusiophoretic mobility of the particles. Our results are applicable to systems where the chemical concentration gradient is comprised of multivalent ions, and motivate future research to manipulate particles by exploiting ion valence.
more »
« less
Diffusiophoresis: a novel transport mechanism - fundamentals, applications, and future opportunities
Diffusiophoresis involves the movement of colloidal-scale entities in response to concentration gradients of a solute. It is broadly categorized into two types: passive and active diffusiophoresis. In passive diffusiophoresis, external concentration gradients drive the motion, while in active diffusiophoresis, the colloidal entity itself assists in generating the gradients. In this perspective, we delve into the fundamental processes underlying passive and active diffusiophoresis and emphasize how prevalent both kinds of diffusiophoresis are in colloidal and natural systems. In particular, we highlight the colloidal focusing feature in passive diffusiophoresis and discuss how it underpins the variety of experimental observations and applications such as low-cost zetasizers, water filtration, and biological pattern formation. For active diffusiophoresis, we emphasize the dependence of particle trajectory on its shape and surface heterogeneity, and discuss how this dictates the applications such as drug delivery, removal of microplastics, and self-repairing materials. Finally, we offer insights and ideas regarding future opportunities in diffusiophoresis.
more »
« less
- Award ID(s):
- 2238412
- PAR ID:
- 10491057
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Sensors
- Volume:
- 4
- ISSN:
- 2673-5067
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Diffusiophoresis refers to the phenomenon where colloidal particles move in response to solute concentration gradients. Existing studies on diffusiophoresis, both experimental and theoretical, primarily focus on the movement of colloidal particles in response to one-dimensional solute gradients. In this work, we numerically investigate the impact of two-dimensional solute gradients on the distribution of colloidal particles, i.e. , colloidal banding, induced via diffusiophoresis. The solute gradients are generated by spatially arranged sources and sinks that emit/absorb a time-dependent solute molar rate. First we study a dipole system, i.e. , one source and one sink, and discover that interdipole diffusion and molar rate decay timescales dictate colloidal banding. At timescales shorter than the interdipole diffusion timescale, we observe a rapid enhancement in particle enrichment around the source due to repulsion from the sink. However, at timescales longer than the interdipole diffusion timescale, the source and sink screen each other, leading to a slower enhancement. If the solute molar rate decays at the timescale of interdipole diffusion, an optimal separation distance is obtained such that particle enrichment is maximized. We find that the partition coefficient of solute at the interface between the source and bulk strongly impacts the optimal separation distance. Surprisingly, the diffusivity ratio of solute in the source and bulk has a much weaker impact on the optimal dipole separation distance. We also examine an octupole configuration, i.e. , four sinks and four sources, arranged in a circle, and demonstrate that the geometric arrangement that maximizes enrichment depends on the radius of the circle. If the radius of the circle is small, it is preferred to have sources and sinks arranged in an alternating fashion. However, if the radius of the circle is large, a consecutive arrangement of sources and sinks is optimal. Our numerical framework introduces a novel method for spatially and temporally designing the banded structure of colloidal particles in two dimensions using diffusiophoresis and opens up new avenues in a field that has primarily focused on one-dimensional solute gradients.more » « less
-
Chemical gradients, the spatial variations in chemical concentrations and components, are omnipresent in environments ranging from biological and environmental systems to industrial processes. These thermodynamic forces often play a central role in driving transport processes taking place in such systems. This review focuses on diffusiophoresis, a phoretic transport phenomenon driven by chemical gradients. We begin by revisiting the fundamental physicochemical hydrodynamics governing the transport. Then we discuss diffusiophoresis arising in flow systems found in natural and artificial settings. By exploring various scenarios where chemical gradients are encountered and exploited, we aim to demonstrate the significance of diffusiophoresis and its state-of-the-art development in technological applications.more » « less
-
We explore the consequences of micelle formation for diffusiophoresis of charged colloidal particles in ionic surfactant concentration gradients, using a quasi-chemical association model for surfactant self assembly. The electrophoretic contribution to diffusiophoresis is determined by re-arranging the Nernst–Planck equations, and the chemiphoretic contribution is estimated by making plausible approximations for the density profiles in the electrical double layer surrounding the particle. For sub-micellar solutions we find that a particle will typically be propelled down the concentration gradient, although electrophoresis and chemiphoresis are finely balanced and the effect is sensitive to the detailed parameter choices and simplifying assumptions in the model. Above the critical micelle concentration (CMC), diffusiophoresis becomes much weaker and may even reverse sign, due to the fact that added surfactant goes into building micelles and not augmenting the monomer or counterion concentrations. We present detailed calculations for sodium dodecyl sulfate (SDS), finding that the typical drift speed for a colloidal particle in a ∼100 μm length scale SDS gradient is ∼1 μm s −1 below the CMC, falling to ≲0.2 μm s −1 above the CMC. These predictions are broadly in agreement with recent experimental work.more » « less
-
A colloidal motor driven by surface tension forces is theoretically designed by encapsulating an active Janus particle in a liquid drop which is immiscible in the suspending medium. The Janus particle produces an asymmetric flux of a solute species which induces surface tension gradients along the liquid–liquid interface between the drop and the surrounding fluid. The resulting Marangoni forces at the interface propel the compound drop/Janus particle system. The propulsion speeds of the motor are evaluated for a range of relative sizes and positions of the drop and the particle and across a range of transport properties of the drop and the suspending medium. It is demonstrated that the proposed design can produce higher propulsion velocities than the traditional Janus-particle-based colloidal motors propelled by neutral diffusiophoresis.more » « less
An official website of the United States government

