skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Permafrost thaw induced abrupt changes in hydrology andcarbon cycling in Lake Wudalianchi, northeastern China
Lakes in the permafrost zone have been proposed to serve as key outlets for methane and carbon dioxide emissions. However, there has been no geological record of the hydrological and biogeochemical responses of lakes throughout the thawing of surrounding permafrost. We use multiple biomarker and isotopic proxies to reconstruct hydrological and biogeochemical changes in Lake Wudalianchi in northeastern China during regional thawing of the permafrost. We show permafrost thawing, as indicated by lignin degradation, initiated rapid lake water freshening as a result of the opening of groundwater conduits, and negative organic δ13C excursion due to increased inorganic and organic carbon fluxes. These hydrological changes were followed, with an ~5–7 yr delay, by abrupt and persistent increases in microbial lake methanotrophy and methanogenesis, indicating enhanced anaerobic organic decomposition and methane emissions from lakes as permafrost thaws. Our data provide a detailed assessment of the processes involved during permafrost thaw, and highlight the importance of lakes in ventilating greenhouse gases to the atmosphere.  more » « less
Award ID(s):
1762431
PAR ID:
10282672
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Geology
ISSN:
0091-7613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Freshwater ecosystem contributions to the global methane budget remains the most uncertain among natural sources. With warming and accompanying carbon release from thawed permafrost and thermokarst lake expansion, the increase of methane emissions could be large. However, the impact and relative importance of various factors related to warming remain uncertain. Based on diverse lake characteristics incorporated in modeling and observational data, we calibrate and verify a lake biogeochemistry model. The model is then applied to estimate global lake methane emissions and examine the impacts of temperature increase for the first and the last decades of the 21st century under different climate scenarios. We find that current emissions are 24.0 ± 8.4 Tg CH4 yr−1from lakes larger than 0.1 km2, accounting for 11% of the global total natural source as estimated based on atmospheric inversion. Future projections under the RCP8.5 scenario suggest a 58%–86% growth in emissions from lakes. Our model sensitivity analysis indicates that additional carbon substrates from thawing permafrost may enhance methane production under warming in the Arctic. Warming enhanced methane oxidation in lake water can be an effective sink to reduce the net release from global lakes. 
    more » « less
  2. Permafrost thaw increases the bioavailability of ancient organic matter, facilitating microbial metabolism of volatile organic compounds (VOCs), carbon dioxide, and methane (CH4). The formation of thermokarst (thaw) lakes in icy, organic-rich Yedoma permafrost leads to high CH4emissions, and subsurface microbes that have the potential to be biogeochemical drivers of organic carbon turnover in these systems. However, to better characterize and quantify rates of permafrost changes, methods that further clarify the relationship between subsurface biogeochemical processes and microbial dynamics are needed. In this study, we investigated four sites (two well-drained thermokarst mounds, a drained thermokarst lake, and the terrestrial margin of a recently formed thermokarst lake) to determine whether biogenic VOCs (1) can be effectively collected during winter, and (2) whether winter sampling provides more biologically significant VOCs correlated with subsurface microbial metabolic potential. During the cold season (March 2023), we drilled boreholes at the four sites and collected cores to simultaneously characterize microbial populations and captured VOCs. VOC analysis of these sites revealed “fingerprints” that were distinct and unique to each site. Total VOCs from the boreholes included > 400 unique VOC features, including > 40 potentially biogenic VOCs related to microbial metabolism. Subsurface microbial community composition was distinct across sites; for example, methanogenic archaea were far more abundant at the thermokarst site characterized by high annual CH4emissions. The results obtained from this method strongly suggest that ∼10% of VOCs are potentially biogenic, and that biogenic VOCs can be mapped to subsurface microbial metabolisms. By better revealing the relationship between subsurface biogeochemical processes and microbial dynamics, this work advances our ability to monitor and predict subsurface carbon turnover in Arctic soils. 
    more » « less
  3. Abstract Climate-driven permafrost thaw can release ancient carbon to the atmosphere, begetting further warming in a positive feedback loop. Polar ice core data and young radiocarbon ages of dissolved methane in thermokarst lakes have challenged the importance of this feedback, but field studies did not adequately account for older methane released from permafrost through bubbling. We synthesized panarctic isotope and emissions datasets to derive integrated ages of panarctic lake methane fluxes. Methane age in modern thermokarst lakes (3132 ± 731 years before present) reflects remobilization of ancient carbon. Thermokarst-lake methane emissions fit within the constraints imposed by polar ice core data. Younger, albeit ultimately larger sources of methane from glacial lakes, estimated here, lagged those from thermokarst lakes. Our results imply that panarctic lake methane release was a small positive feedback to climate warming, comprising up to 17% of total northern hemisphere sources during the deglacial period. 
    more » « less
  4. Abstract. Methane emissions from boreal and arctic wetlands, lakes, and rivers areexpected to increase in response to warming and associated permafrost thaw.However, the lack of appropriate land cover datasets for scalingfield-measured methane emissions to circumpolar scales has contributed to alarge uncertainty for our understanding of present-day and future methaneemissions. Here we present the Boreal–Arctic Wetland and Lake Dataset(BAWLD), a land cover dataset based on an expert assessment, extrapolatedusing random forest modelling from available spatial datasets of climate,topography, soils, permafrost conditions, vegetation, wetlands, and surfacewater extents and dynamics. In BAWLD, we estimate the fractional coverage offive wetland, seven lake, and three river classes within 0.5 × 0.5∘ grid cells that cover the northern boreal and tundra biomes(17 % of the global land surface). Land cover classes were defined usingcriteria that ensured distinct methane emissions among classes, as indicatedby a co-developed comprehensive dataset of methane flux observations. InBAWLD, wetlands occupied 3.2 × 106 km2 (14 % of domain)with a 95 % confidence interval between 2.8 and 3.8 × 106 km2. Bog, fen, and permafrost bog were the most abundant wetlandclasses, covering ∼ 28 % each of the total wetland area,while the highest-methane-emitting marsh and tundra wetland classes occupied5 % and 12 %, respectively. Lakes, defined to include all lentic open-waterecosystems regardless of size, covered 1.4 × 106 km2(6 % of domain). Low-methane-emitting large lakes (>10 km2) and glacial lakes jointly represented 78 % of the total lakearea, while high-emitting peatland and yedoma lakes covered 18 % and 4 %,respectively. Small (<0.1 km2) glacial, peatland, and yedomalakes combined covered 17 % of the total lake area but contributeddisproportionally to the overall spatial uncertainty in lake area with a95 % confidence interval between 0.15 and 0.38 × 106 km2. Rivers and streams were estimated to cover 0.12  × 106 km2 (0.5 % of domain), of which 8 % was associated withhigh-methane-emitting headwaters that drain organic-rich landscapes.Distinct combinations of spatially co-occurring wetland and lake classeswere identified across the BAWLD domain, allowing for the mapping of“wetscapes” that have characteristic methane emission magnitudes andsensitivities to climate change at regional scales. With BAWLD, we provide adataset which avoids double-accounting of wetland, lake, and river extentsand which includes confidence intervals for each land cover class. As such,BAWLD will be suitable for many hydrological and biogeochemical modellingand upscaling efforts for the northern boreal and arctic region, inparticular those aimed at improving assessments of current and futuremethane emissions. Data are freely available athttps://doi.org/10.18739/A2C824F9X (Olefeldt et al., 2021). 
    more » « less
  5. Abstract. Climate warming in the Arctic results in thawing permafrost and associated processes like thermokarst, especially in ice-rich permafrost regions. Since permafrost soils are one of the largest organic carbon reservoirs of the world, their thawing leads to the release of greenhouse gases due to increasing microbial activity with rising soil temperature, further exacerbating climate warming. To enhance the predictions of potential future impacts of permafrost thaw, a detailed assessment of changes in soil characteristics in response to thermokarst processes in permafrost landscapes is needed, which we investigated in this study in an Arctic coastal lowland. We analysed six sediment cores from the Arctic Coastal Plain of northern Alaska, each representing a different landscape feature along a gradient from upland to thermokarst lake and drained basin to thermokarst lagoon in various development stages. For the analysis, a multiproxy approach was used, including sedimentological (grain size, bulk density, ice content), biogeochemical (total organic carbon (TOC), TOC density (TOCvol), total nitrogen (TN), stable carbon isotopes (δ13C), TOC/TN ratio, mercury (Hg)), and lipid biomarker (n-alkanes, n-alkanols, and their ratios) parameters. We found that a semi-drained state of thermokarst lakes features the lowest OC content, and TOC and TN are generally higher in unfrozen deposits, hinting at a more intact state of organic matter. Indicated by the average chain length (ACL), δ13C, Paq, and Pwax, we found a stronger influence of aquatic organic matter (OM) in the OM composition in the soils covered by water compared to those not covered by water. Moreover, the results of the δ13C, TOC/TN ratio, and CPI indicate that the saline deposits contain stronger degraded OM than the deposits not influenced by saltwater. Additionally, we found positive correlations between the TOC and TOCvol and the Hg content in the deposits. The results indicate that thermokarst-influenced deposits tend to accumulate Hg during thawed periods and thus contain more Hg than the upland permafrost deposits that have not been impacted by lake formation. Our findings offer valuable insights into the dynamics of carbon storage and vulnerability to decomposition in coastal permafrost landscapes, reflecting the interplay of environmental factors, landform characteristics, and climate change impacts on Arctic permafrost environments. 
    more » « less