In the ever-evolving landscape of autonomous vehicles, competition and research of high-speed autonomous racing emerged as a captivating frontier, pushing the limits of perception, planning, and control. Autonomous racing presents a setup where the intersection of cutting-edge software and hardware development sparks unprecedented opportunities and confronts unique challenges. The motorsport axiom, “If everything seems under control, then you are not going fast enough,” resonates in this special issue, underscoring the demand for algorithms and hardware that can navigate at the cutting edge of control, traction, and agility. In pursuing autonomy at high speeds, the racing environment becomes a crucible, pushing autonomous vehicles to execute split-second decisions with high precision. Autonomous racing, we believe, offers a litmus test for the true capabilities of self-driving software. Just as racing has historically served as a proving ground for automotive technology, autonomous racing now presents itself as the crucible for testing self-driving algorithms. While routine driving situations dominate much of the autonomous vehicle operations, focusing on extreme situations and environments is crucial to support investigation into safety benefits. The urgency of advancing highspeed autonomy is palpable in burgeoning autonomous racing competitions like Formula Student Driverless, F1TENTH autonomous racing, Roborace, and the Indy Autonomous Challenge. These arenas provide a literal testbed for testing perception, planning, and control algorithms and symbolize the accelerating traction of autonomous racing as a proving ground for agile and safe autonomy. Our special issue focuses on cutting-edge research into software and hardware solutions for highspeed autonomous racing. We sought contributions from the robotics and autonomy communities that delve into the intricacies of head-to-head multi-agent racing: modeling vehicle dynamics at high speeds, developing advanced perception, planning, and control algorithms, as well as the demonstration of algorithms, in simulation and in real-world vehicles. While presenting recent developments for autonomous racing, we believe these special issue papers will also create an impact in the broader realm of autonomous vehicles. 
                        more » 
                        « less   
                    
                            
                            Towards Sim2Real Transfer of Autonomy Algorithms using AutoDRIVE Ecosystem
                        
                    
    
            The engineering community currently encounters significant challenges in the development of intelligent transportation algorithms that can be transferred from simulation to reality with minimal effort. This can be achieved by robustifying the algorithms using domain adaptation methods and/or by adopting cutting-edge tools that help support this objective seamlessly. This work presents AutoDRIVE, an openly accessible digital twin ecosystem designed to facilitate synergistic development, simulation and deployment of cyber-physical solutions pertaining to autonomous driving technology; and focuses on bridging the autonomy-oriented simulation-to-reality (sim2real) gap using the proposed ecosystem. In this paper, we extensively explore the modeling and simulation aspects of the ecosystem and substantiate its efficacy by demonstrating the successful transition of two candidate autonomy algorithms from simulation to reality to help support our claims: (i) autonomous parking using probabilistic robotics approach; (ii) behavioral cloning using deep imitation learning. The outcomes of these case studies further strengthen the credibility of AutoDRIVE as an invaluable tool for advancing the state-of-the-art in autonomous driving technology. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10491342
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- IFAC-PapersOnLine
- Volume:
- 56
- Issue:
- 3
- ISSN:
- 2405-8963
- Page Range / eLocation ID:
- 277 to 282
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Promising new technology has recently emerged to increase the level of safety and autonomy in driving, including lane and distance keeping assist systems, automatic braking systems, and even highway auto-drive systems. Each of these technologies brings cars closer to the ultimate goal of fully autonomous operation. While it is still unclear, if and when safe, driverless cares will be released on the mass market, a comparison with the development of aircraft autopilot systems can provide valuable insight. This review article contains several Additional Resources at the end, including key references to support its findings. The article investigates a path towards ensuring safety for "self-driving" or "autonomous" cars by leveraging prior work in aviation. It focuses on navigation, or localization, which is a key aspect of automated operation.more » « less
- 
            3D LiDAR scanners are playing an increasingly important role in autonomous driving as they can generate depth information of the environment. However, creating large 3D LiDAR point cloud datasets with point-level labels requires a significant amount of manual annotation. This jeopardizes the efficient development of supervised deep learning algorithms which are often data-hungry. We present a framework to rapidly create point clouds with accurate pointlevel labels from a computer game. To our best knowledge, this is the first publication on LiDAR point cloud simulation framework for autonomous driving. The framework supports data collection from both auto-driving scenes and user-configured scenes. Point clouds from auto-driving scenes can be used as training data for deep learning algorithms, while point clouds from user-configured scenes can be used to systematically test the vulnerability of a neural network, and use the falsifying examples to make the neural network more robust through retraining. In addition, the scene images can be captured simultaneously in order for sensor fusion tasks, with a method proposed to do automatic registration between the point clouds and captured scene images. We show a significant improvement in accuracy (+9%) in point cloud segmentation by augmenting the training dataset with the generated synthesized data. Our experiments also show by testing and retraining the network using point clouds from user-configured scenes, the weakness/blind spots of the neural network can be fixed.more » « less
- 
            Zonta, Daniele; Su, Zhongqing; Glisic, Branko (Ed.)Recent developments in autonomous vehicle (AV) or connected AVs (CAVs) technology have led to predictions that fully self-driven vehicles could completely change the transportation network over the next decades. However, at this stage, AVs and CAVs are still in the development stage which requires various trails in the field and machine learning through autonomous driving miles on real road networks. Until the complete market adoption of autonomous technology, a long transition period of coexistence between conventional and autonomous cars would exist. It is important to study and develop the expected driving behavior of future autonomous cars and the traffic simulation platforms provide an opportunity for researchers and technology developers to implement and assess the different behaviors of self-driving vehicle technology before launching it to the actual ground. This study utilizes PTV VISSIM microsimulation platform to evaluate the mobility performance of unmanned vehicles at a 4-way signalized traffic intersection. The software contains three different AV-ready driving logics such as AV-cautious, AV-normal, and AV-aggressive which were tested against the performance of the conventional vehicles, and the results of the study revealed that the overall network operational performance improves with the progressive introduction of AVs using AV-normal, and AV-aggressive driving behaviors while the AV-cautious driving behavior stays conservative and deteriorates the traffic performance.more » « less
- 
            Simulation to reality (sim2real) transfer from a dynamics and controls perspective usually involves re-tuning or adapting the designed algorithms to suit real-world operating conditions, which often violates the performance guarantees established originally. This work presents a generalizable framework for achieving reliable sim2real transfer of autonomy-oriented control systems using multimodel multiobjective robust optimal control synthesis, which lends well to uncertainty handling and disturbance rejection with theoretical guarantees. Particularly, this work is centered around a novel actuation-redundant scaled autonomous vehicle called Nigel, with independent all-wheel drive and independent all-wheel steering architecture, whose enhanced configuration space bodes well for robust control applications. To this end, we present the mechatronic design, dynamics modeling, parameter identification, and robust stabilizing as well as tracking control of Nigel using the proposed framework, with exhaustive experimentation and benchmarking in simulation as well as real-world settings.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    