Energetic electron precipitation into Earth's atmosphere is an important process for radiation belt dynamics and magnetosphere‐ionosphere coupling. The most intense form of such precipitation is microbursts—short‐lived bursts of precipitating fluxes detected on low‐altitude spacecraft. Due to the wide energy range of microbursts (from sub‐relativistic to relativistic energies) and their transient nature, they are thought to be predominantly associated with energetic electron scattering into the loss cone via cyclotron resonance with field‐aligned intense whistler‐mode chorus waves. In this study, we show that intense sub‐relativistic microbursts may be generated via electron nonlinear Landau resonance with very oblique whistler‐mode waves. We combine a theoretical model of nonlinear Landau resonance, equatorial observations of intense very oblique whistler‐mode waves, and conjugate low‐altitude observations of <200 keV electron precipitation. Based on model comparison with observed precipitation, we suggest that such sub‐relativistic microbursts occur by plasma sheet (0.1 − 10 keV) electron trapping in nonlinear Landau resonance, resulting in acceleration to ≲200 keV energies and simultaneous transport into the loss cone. The proposed scenario of intense sub‐relativistic (≲200 keV) microbursts demonstrates the importance of very oblique whistler‐mode waves for radiation belt dynamics.
Sub‐auroral polarization streams (SAPS) are one of the most intense manifestations of magnetosphere‐ionosphere coupling. Magnetospheric energy transport to the ionosphere within SAPS is associated with Poynting flux and the precipitation of thermal energy (0.03–30 keV) plasma sheet particles. However, much less is known about the precipitation of high‐energy (≥50 keV) ions and electrons and their contribution to the low‐altitude SAPS physics. This study examines precipitation within one SAPS event using a combination of equatorial THEMIS and low‐altitude DMSP and ELFIN observations, which, jointly, cover from a few eV up to a few MeV energy range. Observed SAPS are embedding the ion isotropy boundary, which includes strong 300–1,000 keV ion precipitation. SAPS are associated with intense precipitation of relativistic electrons (≤3 MeV), well equatorward of the electron isotropy boundary. Such relativistic electron precipitation is likely due to electron scattering by electromagnetic ion cyclotron waves at the equator.
more » « less- NSF-PAR ID:
- 10491447
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 4
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Certain forms of solar wind transients contain significant enhancements of dynamic pressure and may effectively drive magnetosphere dynamics, including substorms and storms. An integral element of such driving is the generation of a wide range of electromagnetic waves within the inner magnetosphere, either by compressionally heated plasma or by substorm plasma sheet injections. Consequently, solar wind transient impacts are traditionally associated with energetic electron scattering and losses into the atmosphere by electromagnetic waves. In this study, we show the first direct measurements of two such transient‐driven precipitation events as measured by the low‐altitude Electron Losses and Fields Investigation CubeSats. The first event demonstrates storm‐time generated electromagnetic ion cyclotron waves efficiently precipitating sub‐relativistic and relativistic electrons from >300 keV to 2 MeV at the duskside. The second event demonstrates whistler‐mode waves leading to scattering of electrons from 50 to 700 keV on the dawnside. These observations confirm the importance of solar wind transients in driving energetic electron losses and subsequent dynamics in the ionosphere.
-
Abstract Relativistic electron precipitation to the Earth's atmosphere is an important loss mechanism of inner magnetosphere electrons, contributing significantly to the dynamics of the radiation belts. Such precipitation may be driven by electron resonant scattering by middle‐latitude whistler‐mode waves at dawn to noon; by electromagnetic ion cyclotron (EMIC) waves at dusk; or by curvature scattering at the isotropy boundary (at the inner edge of the electron plasma sheet anywhere on the nightside, from dusk to dawn). Using low‐altitude ELFIN and near‐equatorial THEMIS measurements, we report on a new type of relativistic electron precipitation that shares some properties with the traditional curvature scattering mechanism (occurring on the nightside and often having a clear energy/
L ‐shell dispersion). However, it is less common than the typical electron isotropy boundary and it is observed most often during substorms. It is seen equatorward of (and well separated from) the electron isotropy boundary and around or poleward of the ion isotropy boundary (the inner edge of the ion plasma sheet). It may be due to one or more of the following mechanisms: EMIC waves in the presence of a specific radial profile of the cold plasma density; a regional suppression of the magnetic field enhancing curvature scattering locally; and/or electron resonant scattering by kinetic Alfvén waves. -
Abstract Electromagnetic ion cyclotron (EMIC) waves are a key plasma mode affecting radiation belt dynamics. These waves are important for relativistic electron losses through scattering and precipitation into Earth's ionosphere. Although theoretical models of such resonant scattering predict a low‐energy cut‐off of ∼1 MeV for precipitating electrons, observations from low‐altitude spacecraft often show simultaneous relativistic and sub‐relativistic electron precipitation associated with EMIC waves. Recently, nonresonant electron scattering by EMIC waves has been proposed as a possible solution to the above discrepancy. We employ this model and a large database of EMIC waves to develop a universal treatment of electron interactions with EMIC waves, including nonresonant effects. We use the Green's function approach to generalize EMIC diffusion rates foregoing the need to modify existing codes or recompute empirical wave databases. Comparison with observations from the electron losses and fields investigation mission demonstrates the efficacy of the proposed method for explaining sub‐relativistic electron losses by EMIC waves.
-
Abstract The two most important wave modes responsible for energetic electron scattering to the Earth's ionosphere are electromagnetic ion cyclotron (EMIC) waves and whistler‐mode waves. These wave modes operate in different energy ranges: whistler‐mode waves are mostly effective in scattering sub‐relativistic electrons, whereas EMIC waves predominately scatter relativistic electrons. In this study, we report the direct observations of energetic electron (from 50 keV to 2.5 MeV) scattering driven by the combined effect of whistler‐mode and EMIC waves using ELFIN measurements. We analyze five events showing EMIC‐driven relativistic electron precipitation accompanied by bursts of whistler‐driven precipitation over a wide energy range. These events reveal an enhancement of relativistic electron precipitation by EMIC waves during intervals of whistler‐mode precipitation compared to intervals of EMIC‐only precipitation. We discuss a possible mechanism responsible for such precipitation. We suggest that below the minimum resonance energy (
E min) of EMIC waves, the whistler‐mode wave may both scatter electrons into the loss‐cone and accelerate them to higher energy (1–3 MeV). Electrons accelerated aboveE minresonate with EMIC waves that, in turn, quickly scatter those electrons into the loss‐cone. This enhances relativistic electron precipitation beyond what EMIC waves alone could achieve. We present theoretical support for this mechanism, along with observational evidence from the ELFIN mission. We discuss methodologies for further observational investigations of this combined whistler‐mode and EMIC precipitation.