Abstract Plants produce an astonishingly diverse array of specialized metabolites. A crucial step in understanding the origin of such chemodiversity is describing how chemodiversity manifests across the spatial and ontogenetic scales relevant to plant–biotic interactions.Focusing on 21 sympatric species ofPsychotriaandPalicourea sensu lato(Rubiaceae), we describe patterns of specialized metabolite diversity across spatial and ontogenetic scales using a combination of field collections, untargeted metabolomics, and ecoinformatics. We compare α, β, and γ diversity of specialized metabolites in expanding leaves, unripe pulp, immature seed, ripe pulp, mature seed, and fine roots.Within species, fruit tissues from across ontogenetic stages had ≥α diversity than leaves, and ≤β diversity than leaves. Pooled across species, fruit tissues and ontogenetic stages had the highest γ diversity of all organs, and fruit tissues and ontogenetic stages combined had a higher incidence of organ‐specific mass spectral features than leaves. Roots had ≤α diversity than leaves and the lowest β and γ diversity of all organs. Phylogenetic correlations of chemical distance varied by plant organ and chemical class.Our results describe patterns of specialized metabolite diversity across organs and species and provide support for organ‐specific contributions to plant chemodiversity. This study contributes to the growing understanding within plant evolutionary ecology of the biological scales of specialized metabolite diversification. Future studies combining our data on specialized metabolite diversity with biotic interaction data and experiments can test existing hypotheses on the roles of ecological interactions in the evolution of chemodiversity.
more »
« less
Toxin tolerance across landscapes: Ecological exposure not a prerequisite
Abstract Little is known about the tolerances of mammalian herbivores to plant specialized metabolites across landscapes.We investigated the tolerances of two species of herbivorous woodrats,Neotoma lepida(desert woodrat) andNeotoma bryanti(Bryant's woodrat) to creosote bushLarrea tridentata, a widely distributed shrub with a highly toxic resin. Woodrats were sampled from 13 locations both with and without creosote bush across a 900 km transect in the US southwest. We tested whether these woodrat populations consume creosote bush using plant metabarcoding of faeces and quantified their tolerance to creosote bush through feeding trials using chow amended with creosote resin.Toxin tolerance was analysed in the context of population structure across collection sites with microsatellite analyses. Genetic differentiation among woodrats collected from different locations was minimal within either species. Tolerance differed substantially between the two species, withN. lepidapersisting 20% longer thanN. bryantiin feeding trials with creosote resin. Furthermore, in both species, tolerance to creosote resin was similar among woodrats near or within creosote bush habitat. In both species, woodrats collected >25 km from creosote had markedly lower tolerances to creosote resin compared to animals from within the range of creosote bush.The results imply that mammalian herbivores are adapted to the specialized metabolites of plants in their diet, and that this tolerance can extend several kilometres outside of the range of dietary items. That is, direct ecological exposure to the specialized chemistry of particular plant species is not a prerequisite for tolerance to these compounds. These findings lay the groundwork for additional studies to investigate the genetic mechanisms underlying toxin tolerance and to identify how these mechanisms are maintained across landscape‐level scales in mammalian herbivores. Read the freePlain Language Summaryfor this article on the Journal blog.
more »
« less
- Award ID(s):
- 1656497
- PAR ID:
- 10491598
- Publisher / Repository:
- Functional Ecology
- Date Published:
- Journal Name:
- Functional Ecology
- Volume:
- 36
- Issue:
- 8
- ISSN:
- 0269-8463
- Page Range / eLocation ID:
- 2119-2131
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well‐defended plant lineage impacts interactions with diverse herbivores.Erysimum cheiranthoides(Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model.We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes inE. cheiranthoidesand characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. UsingE. cheiranthoidescardiac glycoside‐deficient lines, we conducted insect experiments in both the laboratory and field.EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side‐chain cleavage, andEcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate‐tolerant specialist herbivores, but did not protect against all crucifer‐feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores.These results begin elucidation of theE. cheiranthoidescardiac glycoside biosynthetic pathway and demonstratein vivothat cardiac glycoside production allowsErysimumto escape from some, but not all, specialist herbivores.more » « less
-
Abstract Plant‐microbial‐herbivore interactions play a crucial role in the structuring and maintenance of plant communities and biodiversity, yet these relationships are complex. In grassland ecosystems, herbivores have the potential to greatly influence the survival, growth and reproduction of plants. However, few studies examine interactions of above‐ and below‐ground grazing and arbuscular mycorrhizal (AM) mycorrhizal symbiosis on plant community structure.We established experimental mesocosms containing an assemblage of eight tallgrass prairie grass and forb species in native prairie soil, maintained under mycorrhizal and nonmycorrhizal conditions, with and without native herbivorous soil nematodes, and with and without grasshopper herbivory. Using factorial analysis of variance and principal component analysis, we examined: (a) the independent and interacting effects of above‐ and below‐ground herbivores on AM symbiosis in tallgrass prairie mesocosms, (b) independent and interacting effects of above‐ and below‐ground herbivores and mycorrhizal fungi on plant community structure and (c) potential influences of mycorrhizal responsiveness of host plants on herbivory tolerance and concomitant shifts in plant community composition.Treatment effects were characterized by interactions between AM fungi and both above‐ground and below‐ground herbivores, while herbivore effects were additive. The dominance of mycorrhizal‐dependent C4grasses in the presence of AM symbiosis was increased (p < 0.0001) by grasshopper herbivory but reduced (p < 0.0001) by nematode herbivory. Cool‐season C3grasses exhibited a competitive release in the absence of AM symbiosis but this effect was largely reversed in the presence of grasshopper herbivory. Forbs showed species‐specific responses to both AM fungal inoculation and the addition of herbivores. Biomass of the grazing‐avoidant, facultatively mycotrophic forbBrickellia eupatorioidesincreased (p < 0.0001) in the absence of AM symbiosis and with grasshopper herbivory, while AM‐related increases in the above‐ground biomass of mycorrhizal‐dependent forbsRudbeckia hirtaandSalvia azureawere eradicated (p < 0.0001) by grasshopper herbivory. In contrast, nematode herbivory enhanced (p = 0.001) the contribution ofSalvia azureato total biomass.Synthesis. Our research indicates that arbuscular mycorrhizal symbiosis is the key driver of dominance of C4grasses in the tallgrass prairie, with foliar and root herbivory being two mechanisms for maintenance of plant diversity.more » « less
-
Soil nutrients cause threefold increase in pathogen and herbivore impacts on grassland plant biomassAbstract A combination of theory and experiments predicts that increasing soil nutrients will modify herbivore and microbial impacts on ecosystem carbon cycling.However, few studies of herbivores and soil nutrients have measured both ecosystem carbon fluxes and carbon pools. Even more rare are studies manipulating microbes and nutrients that look at ecosystem carbon cycling responses.We added nutrients to a long‐term, experiment manipulating foliar fungi, soil fungi, mammalian herbivores and arthropods in a low fertility grassland. We measured gross primary production (GPP), ecosystem respiration (ER), net ecosystem exchange (NEE) and plant biomass throughout the growing season to determine how nutrients modify consumer impacts on ecosystem carbon cycling.Nutrient addition increased above‐ground biomass and GPP, but not ER, resulting in an increase in ecosystem carbon uptake rate. Reducing foliar fungi and arthropods increased plant biomass. Nutrients amplified consumer effects on plant biomass, such that arthropods and foliar fungi had a threefold larger impact on above‐ground biomass in fertilized plots.Synthesis. Our work demonstrates that throughout the growing season soil resources modify carbon uptake rates as well as animal and fungal impacts on plant biomass production. Taken together, ongoing nutrient pollution may increase ecosystem carbon uptake and drive fungi and herbivores to have larger impacts on plant biomass production.more » « less
-
Abstract Plants have unique chemical and physical traits that can reduce infections in animals ranging from primates to caterpillars. Sunflowers (Helianthus annuus; Asteraceae) are one striking example, with pollen that suppresses infections by the trypanosomatid gut pathogenCrithidia bombiin the common eastern bumble bee (Bombus impatiens). However, the mechanism underlying this effect has remained elusive, and we do not know whether pollens from other Asteraceae species have similar effects.We evaluated whether mechanisms mediating sunflower pollen's antipathogenic effects are physical (due to its spiny exine), chemical (due to metabolites) or both. We also evaluated the degree to which pollen from seven other Asteraceae species reducedC. bombiinfection relative to pollen from sunflower and two non‐Asteraceae species, and whether pollen spine length predicted pathogen suppression.We found that sunflower exines alone reduced infection as effectively as whole sunflower pollen, while sunflower pollen metabolites did not. Furthermore, bees fed pollen from four of seven other Asteraceae had 62%–92% lowerC. bombiinfections than those fed non‐Asteraceae pollen. Spine length, however, did not explain variation in bumble bee infection.Our study indicates that sunflower pollen's capacity to suppressC. bombiis driven by its spiny exine, and that this phenomenon extends to several other Asteraceae species. Our results indicate that sunflower pollen exines are as effective as whole pollen in reducing infection, suggesting that future studies should expand to assess the effects of other species with spiny pollen on pollinator–pathogen dynamics. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
An official website of the United States government

