skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polymorphism in A 3 MF 6 (A = Rb, Cs; M = Al, Ga) grown using mixed halide fluxes
Single crystals of A3MF6(A = Rb, Cs; M = Al, Ga) were grown from mixed alkali chloride/fluoride fluxes. The polymorphism of each compound was studiedviaTGA/DSC and high temperature X-ray diffraction.  more » « less
Award ID(s):
1834750 2221403
PAR ID:
10491732
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Royal Society of Chemistry
Date Published:
Journal Name:
Dalton Transactions
Volume:
52
Issue:
24
ISSN:
1477-9226
Page Range / eLocation ID:
8425 to 8433
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract It has been suggested that Ba3In2O6might be a high-Tcsuperconductor. Experimental investigation of the properties of Ba3In2O6was long inhibited by its instability in air. Recently epitaxial Ba3In2O6with a protective capping layer was demonstrated, which finally allows its electronic characterization. The optical bandgap of Ba3In2O6is determined to be 2.99 eV in-the (001) plane and 2.83 eV along thec-axis direction by spectroscopic ellipsometry. First-principles calculations were carried out, yielding a result in good agreement with the experimental value. Various dopants were explored to induce (super-)conductivity in this otherwise insulating material. NeitherA- norB-site doping proved successful. The underlying reason is predominately the formation of oxygen interstitials as revealed by scanning transmission electron microscopy and first-principles calculations. Additional efforts to induce superconductivity were investigated, including surface alkali doping, optical pumping, and hydrogen reduction. To probe liquid-ion gating, Ba3In2O6was successfully grown epitaxially on an epitaxial SrRuO3bottom electrode. So far none of these efforts induced superconductivity in Ba3In2O6,leaving the answer to the initial question of whether Ba3In2O6is a high-Tcsuperconductor to be ‘no’ thus far. 
    more » « less
  2. Abstract The Fe protein of nitrogenase plays multiple roles in substrate reduction and cluster maturation via its redox‐active [Fe4S4] cluster. Here we report the synthesis and characterization of a water‐soluble [Fe4Se4] cluster that is used to substitute the [Fe4S4] cluster of theAzotobacter vinelandiiFe protein (AvNifH). Biochemical, EPR and XAS/EXAFS analyses demonstrate the ability of the [Fe4Se4] cluster to adopt the super‐reduced, all‐ferrous state upon its incorporation intoAvNifH. Moreover, these studies reveal that the [Fe4Se4] cluster inAvNifH already assumes a partial all‐ferrous state ([Fe4Se4]0) in the presence of dithionite, where its [Fe4S4] counterpart inAvNifH exists solely in the reduced state ([Fe4S4]1+). Such a discrepancy in the redox properties of theAvNifH‐associated [Fe4Se4] and [Fe4S4] clusters can be used to distinguish the differential redox requirements for the substrate reduction and cluster maturation of nitrogenase, pointing to the utility of chalcogen‐substituted FeS clusters in future mechanistic studies of nitrogenase catalysis and assembly. 
    more » « less
  3. Herein, the effect of structure on pseudocapacitive properties in alkaline conditions is demonstrated through the investigation of isoelectronic oxides Ca2LaMn2O7and Sr2LaMn2O7, where the difference in ionic radii of Ca2+and Sr2+leads to a change in structure and lattice symmetry, resulting in an orthorhombicCmcmstructure for the former and a tetragonalI4/mmmstructure for the latter. While calcium and strontium do not make a direct contribution to the near‐surface faradaic processes that are essential to the pseudocapacitive properties, their effect on the structure leads to a change in the oxygen intercalation process and the associated pseudocapacitive energy storage. It is shown that Sr2LaMn2O7has a significantly greater specific capacitance than Ca2LaMn2O7. In addition, the former shows a considerably higher‐energy density compared to the latter. Furthermore, these materials show highly stable energy‐storage properties, and retain their specific capacitance over 10 000 cycles of charge–discharge in a symmetric pseudocapacitive cell. Importantly, these findings show the structure–property relationships, where a change in the structure and lattice symmetry can result in a significant change in pseudocapacitive charge–discharge properties in isoelectronic systems. 
    more » « less
  4. Abstract The preparation of 0.58 Li2S + 0.315 SiS2+ 0.105 LiPO3glass, and the impacts of polysulfide and P1Pdefect structure impurities on the glass transition temperature (Tg), crystallization temperature (Tc), working range (ΔT≡ Tc‐ Tg), fragility index, and the Raman spectra were evaluated using statistical analysis. In this study, 33 samples of this glass composition were synthesized through melt‐quenching. Thermal analysis was conducted to determine the glass transition temperature, crystallization temperature, working range, and fragility index through differential scanning calorimetry. The quantity of the impurities described above was determined through Raman spectroscopy peak analysis. Elemental sulfur was doped into a glass to quantify the wt% sulfur content in the glasses. Linear regression analysis was conducted to determine the impact of polysulfide impurities and P1Pdefect impurities on the thermal properties. Polysulfide impurities were found to decrease theTgat rate of nearly 12°C per 1 wt% increase in sulfur concentration. The sulfur concentration does not have a statistically significant impact on the other properties (α = 0.05). The P1Pdefect structure appears to decrease the resistance to crystallization of the glass by measurably decreasing the working range of the glasses, but further study is necessary to fully quantify and determine this. 
    more » « less
  5. Reported is the synthesis of a new polar intermetallic phase, Ca4CdIn2Ge4, crystals of which can be readily obtained employing the In‐flux method. The structure and the chemical composition of the new compound are established based on single‐crystal X‐Ray diffraction and energy‐dispersive X‐Ray spectroscopy data. Ca4CdIn2Ge4crystallizes in a monoclinic crystal system with the space groupC2/m(no. 12) with lattice parametersa = 16.7383(12) Å,b = 4.4235(3) Å,c = 7.4322(5) Å, andβ = 106.560(1)°. The structure can formally be classified as a variant of the Mg5Si6structure type (Pearson symbolmS22). Considering the InGe and CdGe interactions as mostly covalent, the polyanionic substructure can be rationalized as consisting of ribbons of edge‐shared [InGe4] tetrahedra connected by Ge2dimers and bridged by Cd atoms in nearly square‐planar environment. Chemical bonding analysis based on TB‐LMTO‐ASA calculations affirms the notion for covalent character of the GeGe bonding with the dimers. The calculations also show that the bonding in the tetrahedra is more covalent in character than the bonding in square‐planar fragments, with the CaGe interactions being the least covalent among all interactions, though not exactly ionic. 
    more » « less