skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Generation of Time-Varying Impedance Attacks Against Haptic Shared Control Steering Systems
The safety-critical nature of vehicle steering is one of the main motivations for exploring the space of possible cyber-physical attacks against the steering systems of modern vehicles. This paper investigates the adversarial capabilities for destabilizing the interaction dynamics between human drivers and vehicle haptic shared control (HSC) steering systems. In contrast to the conventional robotics literature, where the main objective is to render the human-automation interaction dynamics stable by ensuring passivity, this paper takes the exact opposite route. In particular, to investigate the damaging capabilities of a successful cyber-physical attack, this paper demonstrates that an attacker who targets the HSC steering system can destabilize the interaction dynamics between the human driver and the vehicle HSC steering system through synthesis of time-varying impedance profiles. Specifically, it is shown that the adversary can utilize a properly designed non-passive and time-varying adversarial impedance target dynamics, which are fed with a linear combination of the human driver and the steering column torques. Using these target dynamics, it is possible for the adversary to generate in realtime a reference angular command for the driver input device and the directional control steering assembly of the vehicle. Furthermore, it is shown that the adversary can make the steering wheel and the vehicle steering column angular positions to follow the reference command generated by the time-varying impedance target dynamics using proper adaptive control strategies. Numerical simulations demonstrate the effectiveness of such time-varying impedance attacks, which result in a non-passive and inherently unstable interaction between the driver and the HSC steering system.  more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
Date Published:
Journal Name:
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
5064 to 5071
Medium: X
Detroit, MI, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. In face of an increasing number of automotive cyber-physical threat scenarios, the issue of adversarial destabilization of the lateral motion of target vehicles through direct attacks on their steering systems has been extensively studied. A more subtle question is whether a cyberattacker can destabilize the target vehicle lateral motion through improper engagement of the vehicle brakes and/or anti-lock braking systems (ABS). Motivated by such a question, this paper investigates the impact of cyber-physical attacks that exploit the braking/ABS systems to adversely affect the lateral motion stability of the targeted vehicles. Using a hybrid physical/dynamic tire-road friction model, it is shown that if a braking system/ABS attacker manages to continuously vary the longitudinal slips of the wheels, they can violate the necessary conditions for asymptotic stability of the underlying linear time-varying (LTV) dynamics of the lateral motion. Furthermore, the minimal perturbations of the wheel longitudinal slips that result in lateral motion instability under fixed slip values are derived. Finally, a real-time algorithm for monitoring the lateral motion dynamics of vehicles against braking/ABS cyber-physical attacks is devised. This algorithm, which can be efficiently computed using the modest computational resources of automotive embedded processors, can be utilized along with other intrusion detection techniques to infer whether a vehicle braking system/ABS is experiencing a cyber-physical attack. Numerical simulations in the presence of realistic CAN bus delays, destabilizing slip value perturbations obtained from solving quadratic programs on an embedded ARM Cortex-M3 emulator, and side-wind gusts demonstrate the effectiveness of the proposed methodology. 
    more » « less
  2. There are a variety of ways, such as reflashing of targeted electronic control units (ECUs) to hijacking the control of a fleet of wheeled mobile robots, through which adversaries can execute attacks on the actuators of mobile robots and autonomous vehicles. Independent of the source of cyber-physical infiltration, assessing the physical capabilities of an adversary who has made it to the last stage and is directly controlling the cyber-physical system actuators is of crucial importance. This paper investigates the potentials of an adversary who can directly manipulate the traction dynamics of wheeled mobile robots and autonomous vehicles but has a very limited knowledge of the physical parameters of the traction dynamics. It is shown that the adversary can exploit a new class of closed-loop attack policies that can be executed against the traction dynamics leading to wheel lock conditions. In comparison with a previously proposed wheel lock closed-loop attack policy, the attack policy in this paper relies on less computations and knowledge of the traction dynamics. Furthermore, the proposed attack policy generates smooth actuator input signals and is thus harder to detect. Simulation results using various tire-ground interaction conditions demonstrate the effectiveness of the proposed wheel lock attack policy. 
    more » « less
  3. Cyber-physical systems are conducting increasingly complex tasks, which are often modeled using formal languages such as temporal logic. The system’s ability to perform the required tasks can be curtailed by malicious adversaries that mount intelligent attacks. At present, however, synthesis in the presence of such attacks has received limited research attention. In particular, the problem of synthesizing a controller when the required specifications cannot be satisfied completely due to adversarial attacks has not been studied. In this paper, we focus on the minimum violation control synthesis problem under linear temporal logic constraints of a stochastic finite state discrete-time system with the presence of an adversary. A minimum violation control strategy is one that satisfies the most important tasks defined by the user while violating the less important ones. We model the interaction between the controller and adversary using a concurrent Stackelberg game and present a nonlinear programming problem to formulate and solve for the optimal control policy. To reduce the computation effort, we develop a heuristic algorithm that solves the problem efficiently and demonstrate our proposed approach using a numerical case study. 
    more » « less
  4. The increasing penetration of cyber systems into smart grids has resulted in these grids being more vulnerable to cyber physical attacks. The central challenge of higher order cyber-physical contingency analysis is the exponential blow-up of the attack surface due to a large number of attack vectors. This gives rise to computational challenges in devising efficient attack mitigation strategies. However, a system operator can leverage private information about the underlying network to maintain a strategic advantage over an adversary equipped with superior computational capability and situational awareness. In this work, we examine the following scenario: A malicious entity intrudes the cyber-layer of a power network and trips the transmission lines. The objective of the system operator is to deploy security measures in the cyber-layer to minimize the impact of such attacks. Due to budget constraints, the attacker and the system operator have limits on the maximum number of transmission lines they can attack or defend. We model this adversarial interaction as a resource-constrained attacker-defender game. The computational intractability of solving large security games is well known. However, we exploit the approximately modular behavior of an impact metric known as the disturbance value to arrive at a linear-time algorithm for computing an optimal defense strategy. We validate the efficacy of the proposed strategy against attackers of various capabilities and provide an algorithm for a real-time implementation. 
    more » « less
  5. Cyber-Physical Systems (CPS) have been increasingly subject to cyber-attacks including code injection attacks. Zero day attacks further exasperate the threat landscape by requiring a shift to defense in depth approaches. With the tightly coupled nature of cyber components with the physical domain, these attacks have the potential to cause significant damage if safety-critical applications such as automobiles are compromised. Moving target defense techniques such as instruction set randomization (ISR) have been commonly proposed to address these types of attacks. However, under current implementations an attack can result in system crashing which is unacceptable in CPS. As such, CPS necessitate proper control reconfiguration mechanisms to prevent a loss of availability in system operation. This paper addresses the problem of maintaining system and security properties of a CPS under attack by integrating ISR, detection, and recovery capabilities that ensure safe, reliable, and predictable system operation. Specifically, we consider the problem of detecting code injection attacks and reconfiguring the controller in real-time. The developed framework is demonstrated with an autonomous vehicle case study. 
    more » « less