skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamical dark energy and infinite statistics
In the Lambda-CDM model, dark energy is viewed as a constant vacuum energy density, the cosmological constant in the Einstein–Hilbert action. This assumption can be relaxed in various models that introduce a dynamical dark energy. In this paper, we argue that the mixing between infrared (IR) and ultraviolet (UV) degrees of freedom in quantum gravity leads to infinite statistics, the unique statistics consistent with Lorentz invariance in the presence of nonlocality, and yields a fine structure for dark energy. Introducing IR and UV cutoffs into the quantum gravity action, we deduce the form of Lambda as a function of redshift and translate this to the behavior of the Hubble parameter.  more » « less
Award ID(s):
1821071
PAR ID:
10492401
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
World Scientific
Date Published:
Journal Name:
International Journal of Modern Physics A
Volume:
37
Issue:
17
ISSN:
0217-751X
Page Range / eLocation ID:
2242001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We argue for a relation between the supersymmetry breaking scale and the measured value of the dark energy density Λ. We derive it by combining two quantum gravity consistency swampland constraints, which tie the dark energy density Λ and the gravitino mass M 3 / 2 , respectively, to the mass scale of a light Kaluza-Klein tower and, therefore, to the UV cut-off of the effective theory. Whereas the constraint on Λ has recently led to the Dark Dimension scenario, with a prediction of a single mesoscopic extra dimension of the micron size, we use the constraint on M 3 / 2 to infer the implications of such a scenario for the scale of supersymmetry breaking. We find that a natural scale for supersymmetry signatures is $$ M=\mathcal{O}\left({\Lambda}^{\frac{1}{8}}\right)=\mathcal{O}\left(\textrm{TeV}\right). $$ M = O Λ 1 8 = O TeV . This mass scale is within reach of LHC and of the next generation of hadron colliders. Finally, we discuss possible string theory and effective supergravity realizations of the Dark Dimension scenario with broken supersymmetry. 
    more » « less
  2. We provide a brief overview of what is known about quadratic grav- ity, which includes terms quadratic in the curvatures in the fundamental action. This is proposed as a renormalizeable UV completion for quantum gravity which contin- ues to use the metric as the fundamental dynamical variable. However, there are unusual field-theoretic consequences because the propagators contain quartic mo- mentum dependence. At the present stage of our understanding, quadratic gravity continues to be a viable candidate for a theory of quantum gravity. 
    more » « less
  3. A bstract We show how uncertainty in the causal structure of field theory is essentially inevitable when one includes quantum gravity. This includes the fact that lightcones are ill-defined in such a theory. This effect is small in the effective field theory regime, where it is independent of the UV completion of the theory, but grows with energy and represents an unknown uncertainty for a generic UV completion. We include details of the causality uncertainty which arises in a particular UV completion, i.e. quadratic gravity. We describe how the mechanisms uncovered in the effective field theory treatment, and some of those in quadratic gravity, could be common features of quantum gravity. 
    more » « less
  4. A<sc>bstract</sc> Conformal Freeze-in (COFI) scenario postulates a dark sector described by a conformal field theory (CFT) at energies above the “gap scale” in the keV – MeV range. At the gap scale, the dark CFT undergoes confinement, and one of the resulting bound states is identified as the dark matter candidate. In this paper, we study this model in the context of the AdS/CFT correspondence with a focus on the mechanism of the infrared (IR) breaking of conformal invariance in the dark sector. We construct the holographic dual to the conformal dark sector, given by a Randall-Sundrum-like model in 5D, where the Standard Model (SM) fields and the dark matter candidate are placed on the ultraviolet (UV) and IR branes respectively. The separation between the UV and IR branes is stabilized by a bulk scalar field, naturally generating a hierarchy between the electroweak scale and the gap scale. We find that the parameter space of COFI comprises two distinct branches of CFT’s living on the Anti-de-Sitter (AdS) boundary, each corresponding to a different UV boundary condition. The two branches of CFT’s result in different radion potentials. The confinement of the CFT is dual to the spontaneous symmetry breaking by the 5D radion potential. We then use this dual 5D setup to study the cosmological confining phase transition in the dark sector. We find the viable parameter space of the theory which allows the phase transition to complete promptly without significant supercooling. 
    more » « less
  5. ABSTRACT We present updated cosmological constraints from measurements of the gas mass fractions (fgas) of massive, dynamically relaxed galaxy clusters. Our new data set has greater leverage on models of dark energy, thanks to the addition of the Perseus cluster at low redshifts, two new clusters at redshifts z ≳ 1, and significantly longer observations of four clusters at 0.6 < z < 0.9. Our low-redshift (z < 0.16) fgas data, combined with the cosmic baryon fraction measured from the cosmic microwave background (CMB), imply a Hubble constant of h = 0.722 ± 0.067. Combining the full fgas data set with priors on the cosmic baryon density and the Hubble constant, we constrain the dark energy density to be ΩΛ = 0.865 ± 0.119 in non-flat Lambda cold dark matter (cosmological constant) models, and its equation of state to be $$w=-1.13_{-0.20}^{+0.17}$$ in flat, constant-w models, respectively 41 per cent and 29 per cent tighter than our previous work, and comparable to the best constraints available from other probes. Combining fgas, CMB, supernova, and baryon acoustic oscillation data, we also constrain models with global curvature and evolving dark energy. For the massive, relaxed clusters employed here, we find the scaling of fgas with mass to be consistent with a constant, with an intrinsic scatter that corresponds to just ∼3 per cent in distance. 
    more » « less