skip to main content


Title: Board 249: Developing and Creating Affective Knowledge Spaces for Teachers as Advocates for Social Justice
This paper focuses on the professional development component of the CISTEME365 initiative, which supports the creation of affective and knowledge spaces among guidance counselors and teachers as advocates for social justice and equity in STEM education. Using a qualitative case study approach [3], we examine what happens when a pair of middle school educators (science teacher and dual language science teacher) develop an after-school STEM club with a specific goal of creating an equitable and inclusive environment for girls and students from racially minoritized backgrounds. Further, we use inductive thematic analysis methodology [4] to identify propositions on professional development aspects of CISTEME365 programming and its influence on STEM Club design and student experiences.  more » « less
Award ID(s):
1850398
NSF-PAR ID:
10492622
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ASEE Conferences
Date Published:
Journal Name:
ASEE annual conference exposition
ISSN:
2153-5965
Format(s):
Medium: X
Location:
Baltimore , Maryland
Sponsoring Org:
National Science Foundation
More Like this
  1. The Problem The US is currently experiencing a shortage of K-12 science, technology, engineering, and mathematics (STEM) teachers, especially in high-poverty communities. The shortage can be explained by both low teacher recruitment and high teacher turnover; however, the reasons why teachers leave the profession are complex. The Solution We argue that teacher professional development programs are often focused on how teachers can meet the needs of their students but ignore how teachers can build their own professional resilience. We draw from research in both teacher self-efficacy and ecological adaptive capacity to propose a revised Teacher-Centered Systemic Reform Model that identifies adaptive capacity as an outcome goal for individuals and school systems. School environments are dynamic (e.g., new policies, student needs, and changing administrators), and as a result, teachers need skills to adapt, enabling them to be resilient while still meeting students’ needs. The Stakeholders Professional development, teacher educators, human resource development (HRD) practitioners, K-12 STEM teachers. 
    more » « less
  2. Abstract

    Learning science, technology, engineering, and mathematics (STEM) subjects starting at a young age helps prepare students for a variety of careers both inside and outside of the sciences. Yet, addressing integrated STEM in an elementary school setting can be challenging. Teacher leadership is one way to address this challenge. The purpose of this qualitative, descriptive case study is to understand how participation in the NebraskaSTEM Noyce Master Teaching Fellowship project impacted elementary STEM teacher leadership identities. Our findings suggest participation in the project contributed to different layers of teacher leadership identity (as a STEM learner, as a STEM teacher, and as a STEM teacher leader). These findings suggest professional development should be tailored to address empowering specific layers of STEM teacher leaders' professional identity. Other teacher leadership development projects may want to consider how to structure their projects to empower teachers based on the identities and experiences of those teachers.

     
    more » « less
  3. This paper describes an AI Book Club as an innovative 20-hour professional development (PD) model designed to prepare teachers with AI content knowledge and an understanding of the ethical issues posed by bias in AI that are foundational to developing AI-literate citizens. The design of the intervention was motivated by a desire to manage the cognitive load of AI learning by spreading the PD program over several weeks and a desire to form and maintain a community of teachers interested in AI education during the COVID-19 pandemic. Each week participants spent an hour independently reading selections from an AI book, reviewing AI activities, and viewing videos of other educators teaching the activities, then met online for 1 hour to discuss the materials and brainstorm how they might adapt the materials for their classrooms. The participants in the AI Book Club were 37 middle school educators from 3 US school districts and 5 youth-serving organizations. The teachers are from STEM disciplines as well as Social Studies and Art. Eighty-nine percent were from underrepresented groups in STEM and CS. In this paper we describe the design of the AI Book Club, its implementation, and preliminary findings on teachers' impressions of the AI Book Club as a form of PD, thoughts about teaching AI in classrooms, and interest in continuing the book club model in the upcoming year. We conclude with recommendations for others interested in implementing a book club PD format for AI learning. 
    more » « less
  4. Contribution: This single case study represents a unique attempt to examine a music teacher's experiences as he took on the challenge of teaching a high school level engineering course. The study contributes to the growing body of research and conversations around science, technology, engineering, and mathematics (STEM) versus non-STEM beliefs, perceptions, and practices in precollege education. This work informs future teacher professional development (PD) and hiring efforts to broaden the pool of teachers capable of teaching precollege engineering classes. Background: Engineering education is growing in precollege settings but recruiting willing and qualified teachers has been a continuous challenge. Teacher PD programs should consider a broader and inclusive approach that builds confidence and empowers teachers from all disciplinary backgrounds (STEM and non-STEM) to teach precollege engineering classes. Such opportunities are not always made available to non-STEM teachers. Research Questions: 1) How does a high school music teacher with a non-STEM background experience teaching an introductory engineering course? 2) What are the necessary preconditions that could help bridge non-STEM content areas to engineering, specifically for teacher PD efforts? 
    more » « less
  5. Creating effective professional development is critical to support high school teachers who teach computer science (CS) online. The context of this study is based on a current Research to Practice Partnership (RPP) between the University of North Carolina at Charlotte in the United States and North Carolina Virtual Public School (NCVPS). Ten high school teachers from the NCVPS who teach CS online participated in a summer workshop and recommended design, facilitation, and evaluation strategies to be included in effective professional development (PD). The summer workshop was conducted synchronously via Zoom. It provided the opportunity to discuss teacher perceptions related to the research questions "What design, facilitation, and assessment strategies are helpful to include in an AP Computer Science Advanced course?" and "What recommendations do you have for designing an online professional development course for high school teachers to teach computer science online?" The questions were posed through an online collaborative Jamboard, and the affinity diagram method was used for data collection and document analysis was conducted. The teacher posts were qualitatively analyzed to identify common themes. Findings for professional development on content design included CS content, how to teach CS, and CS tools and activities. For assessment, they recommended content knowledge assessments, including lab assignments, single and pair programming, and coding assessments. They recommended tools for supplemental instruction, integration of discussion boards for interaction, and tools and strategies to provide feedback for professional development. 
    more » « less