skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2209791

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. NA (Ed.)
    ABSTRACT Recently, there has been a surge of international interest in extraterrestrial exploration targeting the Moon, Mars, the moons of Mars, and various asteroids. This contribution discusses how current state‐of‐the‐art Earth‐based testing for designing rovers and landers for these missions currently leads to overly optimistic conclusions about the behavior of these devices upon deployment on the targeted celestial bodies. The key misconception is that gravitational offset is necessary during theterramechanicstesting of rover and lander prototypes on Earth. The body of evidence supporting our argument is tied to a small number of studies conducted during parabolic flights and insights derived from newly revised scaling laws. We argue that what has prevented the community from fully diagnosing the problem at hand is the absence of effective physics‐based models capable of simulating terramechanics under low‐gravity conditions. We developed such a physics‐based simulator and utilized it to gauge the mobility of early prototypes of the Volatiles Investigating Polar Exploration Rover. This contribution discusses the results generated by this simulator, how they correlate with physical test results from the NASA‐Glenn SLOPE lab, and the fallacy of the gravitational offset in rover and lander testing. The simulator, which is open‐source and publicly available, also supports studies for in situ resource utilization activities, for example, digging, bulldozing, and berming, in low‐gravity environments. 
    more » « less
    Free, publicly-accessible full text available May 27, 2026
  2. Abstract The soil contact model (SCM) is widely used in practice for off‐road wheeled vehicle mobility studies when simulation speed is important and highly accurate results are not a main concern. In practice, the SCM parameters are obtained via a bevameter test, which requires a complex apparatus and experimental procedure. Here, we advance the idea of running a virtual bevameter test using a high‐fidelity terramechanics simulation. The latter employs the “continuous representation model” (CRM), which regards the deformable terrain as an elasto‐plastic continuum that is spatially discretized using the smoothed particle hydrodynamics method. The approach embraced is as follows: a virtual bevameter test is run in simulation using CRM terrain to generate “ground truth” data; in a Bayesian framework, this data is subsequently used to calibrate the SCM terrain. We show that (i) the resulting SCM terrain, while leading to fast terramechanics simulations, serves as a good proxy for the more complex CRM terrain; and (ii) the SCM‐over‐CRM simulation speedup is roughly one order of magnitude. These conclusions are reached in conjunction with two tests: a single wheel test, and a full rover simulation. The SCM and CRM simulations are run in the open‐source software Chrono. The calibration is performed using PyMC, which is a Python package that interactively communicates with Chrono to calibrate SCM. The models and scripts used in this contribution are available as open source for unfettered use and distribution in a public repository. 
    more » « less
  3. Free, publicly-accessible full text available August 1, 2026
  4. Free, publicly-accessible full text available July 1, 2026
  5. NA (Ed.)
    See PDF. 
    more » « less
  6. When the disturbance input matrix is nonlinear, existing disturbance observer design methods rely on the solvability of a partial differential equation or the existence of an output function with a uniformly well-defined disturbance relative degree, which can pose significant limitations. This note introduces a systematic approach for designing an Immersion and Invariance-based Disturbance Observer (IIDOB) that circumvents these strong assumptions. The proposed IIDOB ensures the disturbance estimation error is globally uniformly ultimately bounded by approximately solving a partial differential equation while compensating for the approximation error. Furthermore, by integrating IIDOB into the framework of control barrier functions, a filter-based safe control design method for control affine systems with disturbances is established where the filter is used to generate an alternative disturbance estimation signal with a known derivative. Sufficient conditions are established to guarantee the safety of the disturbed systems. Simulation results demonstrate the effectiveness of the proposed method. 
    more » « less
  7. This work presents a new safe control framework for Euler-Lagrange (EL) systems with limited model information, external disturbances, and measurement uncertainties. The EL system is decomposed into two subsystems called the proxy subsystem and the virtual tracking subsystem. An adaptive safe controller based on barrier Lyapunov functions is designed for the virtual tracking subsystem to ensure the boundedness of the safe velocity tracking error, and a safe controller based on control barrier functions is designed for the proxy subsystem to ensure controlled invariance of the safe set defined either in the joint space or task space. Theorems that guarantee the safety of the proposed controllers are provided. In contrast to existing safe control strategies for EL systems, the proposed method requires much less model information and can ensure safety rather than input-to-state safety. Simulation results are provided to illustrate the effectiveness of the proposed method. 
    more » « less