skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Invasion by an ecosystem engineer changes biotic interactions between native and non‐native taxa
Abstract Earth systems are nearing a global tipping point, beyond which the dynamics of biological communities will become unstable. One major driver of instability is species invasion, especially by organisms that act as “ecosystem engineers” through their modification of abiotic and biotic factors. To understand how native organisms respond to modified habitat, it is essential to examine biological communities within invaded and non‐invaded habitat, identifying compositional shifts in native and non‐native taxa as well as measuring how modification by ecosystem engineers has affected interactions among community members. Using dietary metabarcoding, our study examines the response of a native Hawaiian generalist predator (Araneae:Pagiopalusspp.) to habitat modification by comparing biotic interactions across metapopulations of spiders collected in native forest and sites invaded by kāhili ginger. Our study shows that, although there are shared components of the dietary community, spiders in invaded habitat are eating a less consistent and more diverse diet consisting of more non‐native arthropods which are rarely or entirely undetected in spiders collected from native forest. Additionally, the frequency of novel interactions with parasites was significantly higher in invaded sites, reflected by the frequency and diversity of non‐native Hymenoptera parasites and entomopathogenic fungi. The study highlights the role of habitat modification driven by an invasive plant in altering community structure and biotic interactions, threatening the stability of the ecosystem through significant changes to the biotic community.  more » « less
Award ID(s):
1927510
PAR ID:
10493339
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology and Evolution
Volume:
13
Issue:
2
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Non‐native invasive species (NIS) release chemicals into the environment that are unique to the invaded communities, defined as novel chemicals. Novel chemicals impact competitors, soil microbial communities, mutualists, plant enemies, and soil nutrients differently than in the species’ native range. Ecological functions of novel chemicals and differences in functions between the native and non‐native ranges of NIS are of immense interest to ecologists. Novel chemicals can mediate different ecological, physiological, and evolutionary mechanisms underlying invasion hypotheses. Interactions amongst the NIS and resident species including competitors, soil microbes, and plant enemies, as well as abiotic factors in the invaded community are linked to novel chemicals. However, we poorly understand how these interactions might enhance NIS performance. New empirical data and analyses of how novel chemicals act in the invaded community will fill major gaps in our understanding of the chemistry of biological invasions. A novel chemical‐invasion mechanism framework shows how novel chemicals engender invasion mechanisms beyond plant–plant or plant–microorganism interactions. 
    more » « less
  2. Abstract The mechanisms causing invasive species impact are rarely empirically tested, limiting our ability to understand and predict subsequent changes in invaded plant communities. Invader disruption of native mutualistic interactions is a mechanism expected to have negative effects on native plant species. Specifically, disruption of native plant‐fungal mutualisms may provide non‐mycorrhizal plant invaders an advantage over mycorrhizal native plants. InvasiveAlliaria petiolata(garlic mustard) produces secondary chemicals toxic to soil microorganisms including mycorrhizal fungi, and is known to induce physiological stress and reduce population growth rates of native forest understory plant species. Here, we report on a 11‐yr manipulative field experiment in replicated forest plots testing if the effects of removal of garlic mustard on the plant community support the mutualism disruption hypothesis within the entire understory herbaceous community. We compare community responses for two functional groups: the mycorrhizal vs. the non‐mycorrhizal plant communities. Our results show that garlic mustard weeding alters the community composition, decreases community evenness, and increases the abundance of understory herbs that associate with mycorrhizal fungi. Conversely, garlic mustard has no significant effects on the non‐mycorrhizal plant community. Consistent with the mutualism disruption hypothesis, our results demonstrate that allelochemical producing invaders modify the plant community by disproportionately impacting mycorrhizal plant species. We also demonstrate the importance of incorporating causal mechanisms of biological invasion to elucidate patterns and predict community‐level responses. 
    more » « less
  3. Abstract Anthropogenic habitat fragmentation—the breaking up of natural landscapes—is a pervasive threat to biodiversity and ecosystem function world‐wide. Fragmentation results in a mosaic of remnant native habitat patches embedded in human‐modified habitat known as the ‘matrix’. By introducing novel environmental conditions in matrix habitats and reducing connectivity of native habitats, fragmentation can dramatically change how organisms experience their environment. The effects of fragmentation can be especially important in urban landscapes, which are expanding across the globe. Despite this surging threat and the importance of microbiomes for ecosystem services, we know very little about how fragmentation affects microbiomes and even less about their consequences for plant–microbe interactions in urban landscapes.By combining field surveys, microbiome sequencing and experimental mesocosms, we (1) investigated how microbial community diversity, composition and functional profiles differed between 15 native pine rockland fragments and the adjacent urban matrix habitat, (2) identified habitat attributes that explained significant variation in microbial diversity of native core habitat compared to urban matrix and (3) tested how changes in urbanized and low connectivity microbiomes affected plant community productivity.We found urban and native microbiomes differed substantively in diversity, composition and functional profiles, including symbiotic fungi decreasing 81% and pathogens increasing 327% in the urban matrix compared to native habitat. Furthermore, fungal diversity rapidly declined as native habitats became increasingly isolated, with ~50% of variation across the landscape explained by habitat connectivity alone. Interestingly, microbiomes from native habitats increased plant productivity by ~300% while urban matrix microbiomes had no effect, suggesting that urbanization may decouple beneficial plant–microbe interactions. In addition, microbial diversity within native habitats explained significant variation in plant community productivity, with higher productivity linked to more diverse microbiomes from more connected, larger fragments.Synthesis. Taken together, our study not only documents significant changes in microbial diversity, composition and functions in the urban matrix, but also supports that two aspects of habitat fragmentation—the introduction of a novel urban matrix and reduced habitat connectivity—disrupt microbial effects on plant community productivity, highlighting preservation of native microbiomes as critical for productivity in remnant fragments. 
    more » « less
  4. The 100,000 ha Sevilleta National Wildlife Refuge (SNWR) in central New Mexico lies in a transition zone that straddles several major biomes of the Southwest, including Great Basin Shrub-Steppe, Mogollon Pinon-Juniper Woodland, Great Plains Grassland and Chihuahuan Desert. During 9 years, (1990-1998), collaborating with the University of New Mexico's Long Term Ecological Research (LTER) program, 3,235 rodents (28 species in 4 families) were collected and identified from permanent collecting sites on the 3 major habitat types (grassland, desert/creosote, woodland) on the SNWR. Hosts were necropsied for endoparasites (protozoa [coccidia], helminths) and some ectoparasites. We identified and analyzed all the parasites found in these hosts. By 1998, we had in place the means to easily identify and moniter the parasites from all mammalian hosts caught on the LTER Phase II grant.This is not just another parasite survey; the data we collected was unique for several reasons: 1) This was the first complete inventory of a natural assemblage of parasites from all mammalian (rodent) hosts in 3 different communities, each from a distinctly defined geographic locality (habitat type) over the period of a decade, and beyond; 2) This study was part of a multidisciplinary approach to address conceptual issues of climate change on ecosystem structure and function at multiple scales (individuals, communities, etc) and correlative data from these related studies will strengthen and contribute to the robustness of this data set; 3) As the only parasite study on any of the LTER projects nationwide, it provided an ideal model, and perhaps incentive for parallel longterm studies of parasite communities to be examined in a variety of other habitat types, and from a variety of different perspectives, and other LTER sites in the network.Upon completing the work, we were able to use these long-term data to try to understand the dynamics of natural host-parasite assemblages. Hypotheses were then erected to test/address at least these questions: How do the different parasite communities colonize, mature, climax and senesce over time (or do they?), Do they vary in response to abiotic (climate change) and/or biotic (dispersal, colonization) factors? What temporal and spatial scales, and among what kinds of organisms, do coevolutionary processes influence the community organization of these parasites? Studies of the dynamics of multiple, coexisting species are confined primarily to microtine rodents and have hinted that multiannual cycles tend to be synchronous (Brown and Heske 1990). Are similar patterns seen for the parasites of our desert rodents? Answers to these questions relating to community structure, as well as to questions concerning parasite biodiversity on the SNWR, can be answered paritially or completely by the information we gathered on the parasite species infecting rodents collected on the SNWR. Initial emphasis of our work was on identifying all the parasites collected, by processing 8 consecutive years of parasite data, and on training the undergraduate and graduate students involved in the art of taxonomy and nomenclature of parasitic protozoans and helminths,  to supply some of these answers. 
    more » « less
  5. Abstract Ecosystems globally are under threat from ongoing anthropogenic environmental change. Effective conservation management requires more thorough biodiversity surveys that can reveal system‐level patterns and that can be applied rapidly across space and time. Using modern ecological models and community science, we integrate environmental DNA and Earth observations to produce a time snapshot of regional biodiversity patterns and provide multi‐scalar community‐level characterization. We collected 278 samples in spring 2017 from coastal, shrub, and lowland forest sites in California, a complex ecosystem and biodiversity hotspot. We recovered 16,118 taxonomic entries from eDNA analyses and compiled associated traditional observations and environmental data to assess how well they predicted alpha, beta, and zeta diversity. We found that local habitat classification was diagnostic of community composition and distinct communities and organisms in different kingdoms are predicted by different environmental variables. Nonetheless, gradient forest models of 915 families recovered by eDNA analysis and using BIOCLIM variables, Sentinel‐2 satellite data, human impact, and topographical features as predictors, explained 35% of the variance in community turnover. Elevation, sand percentage, and photosynthetic activities (NDVI32) were the top predictors. In addition to this signal of environmental filtering, we found a positive relationship between environmentally predicted families and their numbers of biotic interactions, suggesting environmental change could have a disproportionate effect on community networks. Together, these analyses show that coupling eDNA with environmental predictors including remote sensing data has capacity to test proposed Essential Biodiversity Variables and create new landscape biodiversity baselines that span the tree of life. 
    more » « less