Al-Mg alloy disks were produced from Mg sandwiched between Al through 100 turns of high-pressure torsion (HPT) at 6.0 GPa at room temperature, resulting in high microhardness of Hv 300–350 in regions experiencing a nominal shear strain > ~ 390. While compositional mapping using scanning electron microscopy energy-dispersive spectroscopy (EDS) showed a uniform distribution of Mg through the disk thickness at 1.5 mm and 3.0 mm from the disk center, transmission electron microscopy EDS showed a heterogeneous distribution of Mg remained on the nanoscale. Although HPT induces enough mixing to result in face-center-cubic Al with supersaturations of Mg of up to ~ 20 at.% near the disk surfaces, β-Al3Mg2, γ-Al12Mg17 and Al2Mg intermetallic phases were identified by electron diffraction throughout the disk thickness even in regions experiencing high shear strain. This study visually captures detailed compositional heterogeneity throughout the sample thickness following intense mechanical alloying, nanoscale re-structuring and phase transformations.
more »
« less
Evaluating High‐Pressure Torsion Scale‐Up
Increasing sample dimensions in high‐pressure torsion (HPT) processing affects load and torque requirements, deformation distribution, and heating. Finite‐element modeling (FEM) and experiments are used to investigate the effect of technical parameters on the scaling up of HPT. Simulations confirm that axial load and torque requirements are proportional to the square and the cube of the sample radius, respectively. The temperature rise also displays a pronounced dependency on the radius. Decreasing the diameter‐to‐thickness ratio can cause heterogeneity in strain distribution along the thickness direction at the edges of the sample. Such heterogeneity is governed by friction conditions between the material and the lateral wall of the anvil depression. Simulation of HPT processing of ring‐shaped samples shows that it is possible to reach more homogeneous distribution of strain and flow stress in the processed material. Experiments using magnesium confirm a tendency for strain localization in the early stage of HPT processing but increasing the number of turns increases the homogeneity of the material. The embodied energy in HPT processing is discussed.
more »
« less
- Award ID(s):
- 2051205
- PAR ID:
- 10493666
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Engineering Materials
- Volume:
- 26
- Issue:
- 19
- ISSN:
- 1438-1656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Experiments were conducted to reveal the nanostructure evolution in additively manufactured (AMed) 316L stainless steel due to severe plastic deformation (SPD). SPD-processing was carried out using the high-pressure torsion (HPT) technique. HPT was performed on four different states of 316L: the as-built material and specimens heat-treated at 400, 800 and 1100 °C after AM-processing. The motivation for the extension of this research to the annealed states is that heat treatment is a usual step after 3D printing in order to reduce the internal stresses formed during AM-processing. The nanostructure was studied by X-ray line profile analysis (XLPA), which was completed by crystallographic texture measurements. It was found that the as-built 316L sample contained a considerable density of dislocations (1015 m−2), which decreased to about half the original density due to the heat treatments at 800 and 1100 °C. The hardness varied accordingly during annealing. Despite this difference caused by annealing, HPT processing led to a similar evolution of the microstructure by increasing the strain for the samples with and without annealing. The saturation values of the crystallite size, dislocation density and twin fault probability were about 20 nm, 3 × 1016 m−2 and 3%, respectively, while the maximum achievable hardness was ~6000 MPa. The initial <100> and <110> textures for the as-built and the annealed samples were changed to <111> due to HPT processing.more » « less
-
The mechanical bonding of dissimilar metals though the application of high‐pressure torsion (HPT) processing is developed recently for introducing unique ultrafine‐grained alloy systems involving microstructural heterogeneity leading to excellent mechanical properties. Considering further developments of the processing approach and the produced hybrid materials, the size effect on microstructural evolution and micromechanical responses of the mechanically bonded Al–Mg systems is evaluated. In practice, processing by HPT is conducted at room temperature on the separate Al and Mg disks having 25 mm diameter under 1.0 GPa at 0.4 rpm, and the results are compared with the mechanically bonded Al–Mg system having 10 mm diameter. The Al–Mg disks having 25 mm diameter show a general hardness distribution where low hardness appears around the disk centers, and it increases at the disk peripheries. Nanoindentation measurements demonstrate that there is excellent plasticity at the edges of the Al–Mg system with 25 mm diameter. The Al–Mg system with both 10 and 25 mm diameters show a consistent trend of hardness evolution outlining an exponential increase of hardness with increasing equivalent strain. The results are anticipated to provide a conceptual framework for the development and scale‐up of the HPT‐induced mechanical bonding technique.more » « less
-
Solid‐state welding of Al 1043 sheets is achieved via high‐pressure torsion (HPT) processing to produce bulk nanostructured Al disks. A homogeneous nanostructure without segregation is observed, with grain sizes of ≈430–470 nm. Miniature tensile testing, coupled with the digital image correlation (DIC) technique, is employed to determine the room‐temperature tensile deformation behavior, particularly the nonuniform behavior with necking, of the HPT‐bonded ultrafine‐grained (UFG) aluminum, comparing it with annealed coarse‐grained counterpart. The HPT‐bonded UFG Al exhibits a large fraction of post‐necking strain, which is supported by the estimated high strain rate sensitivity value ofm = 0.085, suggesting the delay of local necking leading to tensile fracture. Detailed DIC analysis reveals prolonged diffuse necking, thus delaying local necking, in the HPT‐bonded UFG Al, while the annealed samples show high fractions of local necking during the nonuniform deformation. Moreover, the DIC data illustrate that local necking predominantly occurred at a limited neck zone, maintaining a plateau strain distribution at the out‐of‐neck zone throughout necking deformation toward tensile failure for both annealed and UFG aluminum. The DIC method offers an alternative means to demonstrate the transition in necking behaviors of materials by estimating the plastic lateral contraction exponent.more » « less
-
A towing tank investigation of a single rotor blade operating at hovering and high advance ratio conditions is presented. A custom blade was manufactured and instrumented with fully bridged axial strain gauges to monitor the flap bending strain at three radial locations. Measurements of rotor thrust and torque were obtained to characterise the rotor aerodynamic environment for advance ratios ranging from 0.4 to 1.00 and to identify the presence of stalled and reverse flow. Strain measurements obtained at three locations across the blade span show minima and maxima at approximately the same azimuthal location as the load data. Moreover, the strain distribution shows a growth in strain magnitude with increasing advance ratio. Spectra of strain shows a dominant 1/rev signal and for the ∅ = 25° collective, non-harmonic frequencies are observed due to aperiodic vortex shedding from the presence of stalled flow.more » « less
An official website of the United States government
