skip to main content


This content will become publicly available on February 10, 2025

Title: The Evolutions and Large‐Scale Mechanisms of Summer Stratospheric Ozone Intrusion Across Global Hotspots
Abstract

Stratospheric ozone intrusions can have a significant impact on regional near‐surface ozone levels. Especially in summer, intrusions can contribute to extreme ozone events because of preexisting high ozone levels near the surface and cause serious health issues. Considering the increasing trend of surface ozone level, an understanding of stratospheric ozone intrusion is necessary. From a 19‐year Whole Atmosphere Community Climate Model, version 6 simulation and a stratospheric origin ozone tracer, we identify the global hotspots of stratospheric intrusions based on extreme tracer concentrations near the surface: North America, Africa, the Mediterranean, and the Middle East. We investigate the common underlying large‐scale mechanisms of the stratospheric intrusions over the identified hotspots from the lower stratosphere to the lower troposphere. From the trajectory analysis, we find that the upper‐level jet drives isentropic mixing near the jet axis and initiates stratospheric ozone intrusion. Subsequently, climatological descent at the lower troposphere brings the ozone down to the surface, which explains the spatial preference of summertime stratospheric intrusion events.

 
more » « less
NSF-PAR ID:
10493671
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
129
Issue:
4
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The stratospheric influence on summertime high surface ozone (O3) events is examined using a twenty-year simulation from the Whole Atmosphere Community Climate Model. We find thatO3transported from the stratosphere makes a significant contribution to the surfaceO3variability where background surfaceO3exceeds the 95thpercentile, especially over western U.S. Maximum covariance analysis is applied toO3anomalies paired with stratosphericO3tracer anomalies to identify the stratospheric intrusion and the underlying dynamical mechanism. The first leading mode corresponds to deep stratospheric intrusions in the western and northern tier of the U.S., and intensified northeasterlies in the mid-to-lower troposphere along the west coast, which also facilitate the transport to the eastern Pacific Ocean. The second leading mode corresponds to deep intrusions over the Intermountain Regions. Both modes are associated with eastward propagating baroclinic systems, which are amplified near the end of the North Pacific storm tracks, leading to strong descents over the western U.S.

     
    more » « less
  2. Abstract The role of differential advection in creating tropopause folds and strong constituent gradients near midlatitude westerly jets is investigated using the University of Wisconsin Non-hydrostatic Modeling System (UWNMS). Dynamical structures are compared with aircraft observations through a fold and subpolar jet (SPJ) during RF04 of the Stratosphere-Troposphere Analyses of Regional Transport (START08) campaign. The observed distribution of water vapor and ozone during RF04 provides evidence of rapid transport in the SPJ, enhancing constituent gradients above relative to below the intrusion. The creation of a tropopause fold by quasi-isentropic differential advection on the upstream side of the trough is described. This fold was created by a southward jet streak in the SPJ, where upper tropospheric air displaced the tropopause eastward in the 6-10 km layer, thereby overlying stratospheric air in the 3-6 km layer. The subsequent superposition of the subtropical and subpolar jets is also shown to result from quasi-isentropic differential advection. The occurrence of low values of ozone, water vapor, and potential vorticity on the equatorward side of the SPJ can be explained by convective transport of low-ozone air from the boundary layer, dehydration in the updraft, and detrainment of inertially-unstable air in the outflow layer. An example of rapid juxtaposition with stratospheric air in the jet core is shown for RF01. The net effect of upstream convective events is suggested as a fundamental cause of the strong constituent gradients observed in midlatitude jets. Idealized diagrams illustrate the role of differential advection in creating tropopause folds and constituent gradient enhancement. 
    more » « less
  3. Abstract. Stratosphere-to-troposphere transport (STT) is an important sourceof ozone for the troposphere, particularly over western North America. STTin this region is predominantly controlled by a combination of thevariability and location of the Pacific jet stream and the amount of ozonein the lower stratosphere, two factors which are likely to change ifgreenhouse gas concentrations continue to increase. Here we use WholeAtmosphere Community Climate Model experiments with a tracer ofstratospheric ozone (O3S) to study how end-of-the-century RepresentativeConcentration Pathway (RCP) 8.5 sea surface temperatures (SSTs) andgreenhouse gases (GHGs), in isolation and in combination, influence STT ofozone over western North America relative to a preindustrial controlbackground state. We find that O3S increases by up to 37 % during late winter at 700 hPaover western North America in response to RCP8.5 forcing, with the increasestapering off somewhat during spring and summer. When this response to RCP8.5greenhouse gas forcing is decomposed into the contributions made by futureSSTs alone versus future GHGs alone, the latter are found to be primarilyresponsible for these O3S changes. Both the future SSTs alone and the futureGHGs alone accelerate the Brewer–Dobson circulation, which modifiesextratropical lower-stratospheric ozone mixing ratios. While the future GHGsalone promote a more zonally symmetric lower-stratospheric ozone change dueto enhanced ozone production and some transport, the future SSTs aloneincrease lower-stratospheric ozone predominantly over the North Pacific viatransport associated with a stationary planetary-scale wave. Ozoneaccumulates in the trough of this anomalous wave and is reduced over thewave's ridges, illustrating that the composition of the lower-stratosphericozone reservoir in the future is dependent on the phase and position of thestationary planetary-scale wave response to future SSTs alone, in additionto the poleward mass transport provided by the accelerated Brewer–Dobsoncirculation. Further, the future SSTs alone account for most changes to thelarge-scale circulation in the troposphere and stratosphere compared to theeffect of future GHGs alone. These changes include modifying the positionand speed of the future North Pacific jet, lifting the tropopause,accelerating both the Brewer–Dobson circulation's shallow and deep branches,and enhancing two-way isentropic mixing in the stratosphere. 
    more » « less
  4. Abstract. The El Niño–Southern Oscillation (ENSO) is known to modulate the strength and frequency of stratosphere-to-troposphere transport (STT) of ozone over the Pacific–North American region during late winter to early summer. Dynamical processes that have been proposed to account for this variability include variations in the amount of ozone in the lowermoststratosphere that is available for STT and tropospheric circulation-relatedvariations in the frequency and geographic distribution of individual STTevents. Here we use a large ensemble of Whole Atmosphere Community Climate Model(WACCM) simulations (forced by sea-surface temperature (SST) boundaryconditions consistent with each phase of ENSO) to show that variability inlower-stratospheric ozone and shifts in the Pacific tropospheric jetconstructively contribute to the amount of STT of ozone in the NorthAmerican region during both ENSO phases. In terms of stratosphericvariability, ENSO drives ozone anomalies resembling the Pacific–NorthAmerican teleconnection pattern that span much of the lower stratospherebelow 50 hPa. These ozone anomalies, which dominate over other ENSO-drivenchanges in the Brewer–Dobson circulation (including changes due to both thestratospheric residual circulation and quasi-isentropic mixing), stronglymodulate the amount of ozone available for STT transport. As a result,during late winter (February–March), the stratospheric ozone response to theteleconnections constructively reinforces anomalous ENSO-jet-driven STT ofozone. However, as ENSO forcing weakens as spring progresses into summer(April–June), the direct effects of the ENSO-jet-driven STT transportweaken. Nevertheless, the residual impacts of the teleconnections on theamount of ozone in the lower stratosphere persist, and these anomalies inturn continue to cause anomalous STT of ozone. These results should provehelpful for interpreting the utility of ENSO as a subseasonal predictor ofboth free-tropospheric ozone and the probability of stratospheric ozoneintrusion events that may cause exceedances in surface air qualitystandards. 
    more » « less
  5. Abstract

    Recent observational studies have shown that stratospheric air rich in ozone (O3) is capable of being transported into the upper troposphere in association with tropopause‐penetrating convection (anvil wrapping). This finding challenges the current understanding of upper tropospheric sources of O3, which is traditionally thought to come from thunderstorm outflows where lightning‐generated nitrogen oxides facilitate O3formation. Since tropospheric O3is an important greenhouse gas and the frequency and strength of tropopause‐penetrating storms may change in a changing climate, it is important to understand the mechanisms driving this transport process so that it can be better represented in chemistry‐climate models. Simulations of a mesoscale convective system (MCS) around which this transport process was observed are performed using the Weather Research and Forecasting model coupled with Chemistry. The Weather Research and Forecasting model coupled with Chemistry model adequately simulates anvil wrapping of ozone‐rich air. Possible mechanisms that influence the transport, including small‐scale static and dynamic instabilities and MCS‐induced mesoscale circulations, are evaluated. Model results suggest that anvil wrapping is a two‐step transport process (1) compensating subsidence surrounding the MCS, which is driven by mass conservation as the MCS transports tropospheric air into the upper troposphere and lower stratosphere, followed by (2) differential advection beneath the core of the MCS upper‐tropospheric outflow jet which wraps high O3air around and under the MCS cloud anvil. Static and dynamic instabilities are not a leading contributor to this transport process. Continued fine‐scale modeling of these events is needed to fully represent the stratosphere‐to‐troposphere transport process.

     
    more » « less