Abstract Real‐time onboard state monitoring and estimation of a battery over its lifetime is indispensable for the safe and durable operation of battery‐powered devices. In this study, a methodology to predict the entire constant‐current cycling curve with limited input information that can be collected in a short period of time is developed. A total of 10 066 charge curves of LiNiO2‐based batteries at a constant C‐rate are collected. With the combination of a feature extraction step and a multiple linear regression step, the method can accurately predict an entire battery charge curve with an error of < 2% using only 10% of the charge curve as the input information. The method is further validated across other battery chemistries (LiCoO2‐based) using open‐access datasets. The prediction error of the charge curves for the LiCoO2‐based battery is around 2% with only 5% of the charge curve as the input information, indicating the generalization of the developed methodology for predicting battery cycling curves. The developed method paves the way for fast onboard health status monitoring and estimation for batteries during practical applications.
more »
« less
Counterfactual Explanations of Neural Network-Generated Response Curves
Response curves exhibit the magnitude of the response of a sensitive system to a varying stimulus. However, response of such systems may be sensitive to multiple stimuli (i.e., input features) that are not necessarily independent. As a consequence, the shape of response curves generated for a selected input feature (referred to as “active feature”) might depend on the values of the other input features (referred to as “passive features”). In this work we consider the case of systems whose response is approximated using regression neural networks. We propose to use counterfactual explanations (CFEs) for the identification of the features with the highest relevance on the shape of response curves generated by neural network black boxes. CFEs are generated by a genetic algorithm-based approach that solves a multi-objective optimization problem. In particular, given a response curve generated for an active feature, a CFE finds the minimum combination of passive features that need to be modified to alter the shape of the response curve. We tested our method on a synthetic dataset with 1-D inputs and two crop yield prediction datasets with 2-D inputs. The relevance ranking of features and feature combinations obtained on the synthetic dataset coincided with the analysis of the equation that was used to generate the problem. Results obtained on the yield prediction datasets revealed that the impact on fertilizer responsivity of passive features depends on the terrain characteristics of each field.
more »
« less
- Award ID(s):
- 1664858
- PAR ID:
- 10493698
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- International Joint Conference on Neural Networks (IJCNN)
- ISBN:
- 978-1-6654-8867-9
- Page Range / eLocation ID:
- 01 to 08
- Format(s):
- Medium: X
- Location:
- Gold Coast, Australia
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Machine learning models exhibit strong performance on datasets with abundant labeled samples. However, for tabular datasets with extremely high d-dimensional features but limited n samples (i.e. d ≫ n), machine learning models struggle to achieve strong performance due to the risk of overfitting. Here, our key insight is that there is often abundant, auxiliary domain information describing input features which can be structured as a heterogeneous knowledge graph (KG). We propose PLATO, a method that achieves strong performance on tabular data with d ≫ n by using an auxiliary KG describing input features to regularize a multilayer perceptron (MLP). In PLATO, each input feature corresponds to a node in the auxiliary KG. In the MLP’s first layer, each input feature also corresponds to a weight vector. PLATO is based on the inductive bias that two input features corresponding to similar nodes in the auxiliary KG should have similar weight vectors in the MLP’s first layer. PLATO captures this inductive bias by inferring the weight vector for each input feature from its corresponding node in the KG via a trainable message-passing function. Across 6 d ≫ n datasets, PLATO outperforms 13 state-of-the-art baselines by up to 10.19%.more » « less
-
Domain adaptation techniques using deep neural networks have been mainly used to solve the distribution shift problem in homogeneous domains where data usually share similar feature spaces and have the same dimensionalities. Nevertheless, real world applications often deal with heterogeneous domains that come from completely different feature spaces with different dimensionalities. In our remote sensing application, two remote sensing datasets collected by an active sensor and a passive one are heterogeneous. In particular, CALIOP actively measures each atmospheric column. In this study, 25 measured variables/features that are sensitive to cloud phase are used and they are fully labeled. VIIRS is an imaging radiometer, which collects radiometric measurements of the surface and atmosphere in the visible and infrared bands. Recent studies have shown that passive sensors may have difficulties in prediction cloud/aerosol types in complicated atmospheres (e.g., overlapping cloud and aerosol layers, cloud over snow/ice surface, etc.). To overcome the challenge of the cloud property retrieval in passive sensor, we develop a novel VAE based approach to learn domain invariant representation that capture the spatial pattern from multiple satellite remote sensing data (VDAM), to build a domain invariant cloud property retrieval method to accurately classify different cloud types (labels) in the passive sensing dataset. We further exploit the weight based alignment method on the label space to learn a powerful domain adaptation technique that is pertinent to the remote sensing application. Experiments demonstrate our method outperforms other state-of-the-art machine learning methods and achieves higher accuracy in cloud property retrieval in the passive satellite dataset.more » « less
-
In this paper we prove that the problem of deciding contractibility of an arbitrary closed curve on the boundary of a 3-manifold is in NP. We emphasize that the manifold and the curve are both inputs to the problem. Moreover, our algorithm also works if the curve is given as a compressed word. Previously, such an algorithm was known for simple (non-compressed) curves, and, in very limited cases, for curves with self-intersections. Furthermore, our algorithm is fixed-parameter tractable in the size of the input 3-manifold. As part of our proof, we obtain new polynomial-time algorithms for compressed curves on surfaces, which we believe are of independent interest. We provide a polynomial-time algorithm which, given an orientable surface and a compressed loop on the surface, computes a canonical form for the loop as a compressed word. In particular, contractibility of compressed curves on surfaces can be decided in polynomial time; prior published work considered only constant genus surfaces. More generally, we solve the following normal subgroup membership problem in polynomial time: given an arbitrary orientable surface, a compressed closed curve, and a collection of disjoint normal curves, there is a polynomial-time algorithm to decide if the curve lies in the normal subgroup generated by components of the normal curves in the fundamental group of the surface after attaching the curves to a basepoint.more » « less
-
null (Ed.)Abstract Background Drug sensitivity prediction and drug responsive biomarker selection on high-throughput genomic data is a critical step in drug discovery. Many computational methods have been developed to serve this purpose including several deep neural network models. However, the modular relations among genomic features have been largely ignored in these methods. To overcome this limitation, the role of the gene co-expression network on drug sensitivity prediction is investigated in this study. Methods In this paper, we first introduce a network-based method to identify representative features for drug response prediction by using the gene co-expression network. Then, two graph-based neural network models are proposed and both models integrate gene network information directly into neural network for outcome prediction. Next, we present a large-scale comparative study among the proposed network-based methods, canonical prediction algorithms (i.e., Elastic Net, Random Forest, Partial Least Squares Regression, and Support Vector Regression), and deep neural network models for drug sensitivity prediction. All the source code and processed datasets in this study are available at https://github.com/compbiolabucf/drug-sensitivity-prediction . Results In the comparison of different feature selection methods and prediction methods on a non-small cell lung cancer (NSCLC) cell line RNA-seq gene expression dataset with 50 different drug treatments, we found that (1) the network-based feature selection method improves the prediction performance compared to Pearson correlation coefficients; (2) Random Forest outperforms all the other canonical prediction algorithms and deep neural network models; (3) the proposed graph-based neural network models show better prediction performance compared to deep neural network model; (4) the prediction performance is drug dependent and it may relate to the drug’s mechanism of action. Conclusions Network-based feature selection method and prediction models improve the performance of the drug response prediction. The relations between the genomic features are more robust and stable compared to the correlation between each individual genomic feature and the drug response in high dimension and low sample size genomic datasets.more » « less
An official website of the United States government

