This paper reports on quasi-elliptic dual-band bandpass filters (BPFs) that were designed for the Filter Student Design Competition of the 2019 European Microwave Week. The proposed lumped-element (LE) BPF concept is based on two dual-band transversal cells and one multi-resonant cell that allow the realization of symmetric and asymmetric dual-band transfer functions shaped by six poles and five transmission zeros. A compact implementation scheme based on LE series resonators is proposed for size compactness and wide spurious free out-of-band response. For proof-of-concept demonstration purposes, a dual-band LE prototype with two passbands centered 1 and 1.5 GHz was designed, manufactured, and measured. It exhibited the following radio frequency measured performance characteristics. Passbands centered at 1.02 and 1.45 GHz, minimum insertion loss levels of 2.0 and 2.7 dB, and bandwidth of 146 and 105 MHz, respectively, for the first and the second passband, and out-of-band rejection >30 dB between 0 and 894 MHz, 1.17–1.34 GHz, and 1.72–6.9 GHz.
more »
« less
Towards dual-band reconfigurable metasurfaces for satellite networking
The first low earth orbit satellite networks for internet service have recently been deployed and are growing in size, yet will face deployment challenges in many practical circumstances of interest. This paper explores how a dual-band, electronically tunable smart surface can enable dynamic beam alignment between the satellite and mobile users, make service possible in urban canyons, and improve service in rural areas. Our design is the first of its kind to target dual channels in the Ku radio frequency band with a novel dual Huygens resonator design that leverages radio reciprocity to allow our surface to simultaneously steer energy in the satellite uplink and downlink directions, and in both reflective and transmissive modes of operation. Our surface, Wall-E, is designed and evaluated in an electromagnetic simulator and demonstrates 94% transmission efficiency and a 85% reflection efficiency, with at most 6 dB power loss at steering angles over a 150 degree field of view for both transmission and reflection. With 75cm2 surface, our link budget calculations predict 4 dB and 24 dB improvement in the SNR of a link entering the window of a rural home in comparison to the free-space path and brick wall penetration, respectively.
more »
« less
- Award ID(s):
- 2148271
- PAR ID:
- 10494075
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the 21st ACM Workshop on Hot Topics in Networks
- ISBN:
- 9781450398992
- Page Range / eLocation ID:
- 17 to 23
- Format(s):
- Medium: X
- Location:
- Austin Texas
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper introduces a novel design methodology for a dual-band branch-line coupler (DBBLC) that, for the first time, facilitates practically unlimited band ratio, enhanced flexibility in power division, and arbitrary port termination impedance concurrently. This approach ensures precise power distribution, matching, and isolation requirements by utilizing a generalized coupler core paired with an L-section impedance-matching network. This paper details an innovative and comprehensive analytical strategy for DBBLC design, which overcomes the limitations noted in prior research by deriving a generalized formula for the power division ratio (k) and simplifying the design equations to decrease complexity. This method enables the simultaneous realization of varied power division ratios, frequency ratios (r), and port impedances ( Zp ), thus offering remarkable design versatility. The effectiveness of this new analytical design methodology is corroborated through several design examples. Moreover, two prototype models operating at 1 GHz/2.5 GHz ( r=2.5,k=0 dB) and 1 GHz/2 GHz ( r=2,k=4.77 dB) frequencies, constructed on Rogers’ RO4003C substrate, exhibit >22 dB return loss, <0.64 dB amplitude imbalance as well as <1° phase imbalance of the transmission parameters and >25 dB isolation at all the targeted frequencies. Therefore, the development and validation of this new DBBLC structure, as demonstrated by the strong correlation between our simulated and experimental findings, not only surpasses the capabilities of existing models, but also broadens the applicability of dual-band couplers in modern wireless communication systems.more » « less
-
This paper presents the novel design of a printed, low-cost, dual-port, and dual-polarized slot antenna for microwave biomedical radars. The butterfly shape of the radiating element, with orthogonally positioned arms, enables simultaneous radiation of both vertically and horizontally polarized waves. The antenna is intended for full-duplex in-band applications using two mutually isolated antenna ports, with the CPW port on the same side of the substrate as the slot antenna and the microstrip port positioned orthogonally on the other side of the substrate. Those two ports can be used as transmit and receive ports in a radar transceiver, with a port isolation of 25 dB. Thanks to the bow-tie shape of the slots and an additional coupling region between the butterfly arms, there is more flexibility in simultaneous optimization of the resonant frequency and input impedance at both ports, avoiding the need for a complicated matching network that introduces the attenuation and increases antenna dimensions. The advantage of this design is demonstrated through the modeling of an eight-element dual-port linear array with an extremely simple feed network for high-gain biosensing applications. To validate the simulation results, prototypes of the proposed antenna were fabricated and tested. The measured operating band of the antennas spans from 2.35 GHz to 2.55 GHz, with reflection coefficients of less than—10 dB, a maximum gain of 8.5 dBi, and a front-to-back gain ratio that is greater than 15 dB, which is comparable with other published single dual-port slot antennas. This is the simplest proposed dual-port, dual-polarization antenna that enables straightforward scaling to other frequency bands.more » « less
-
We present the design and implementation of WaveFlex, the first smart surface that enhances Private 5G networks operating under the shared-license framework in the Citizens Broadband Radio Service frequency band. WaveFlex works in the presence of frequency diversity: multiple nearby base stations operating on different frequencies, as dictated by a Spectrum Access System coordinator. It also handles time dynamism: due to the dynamic sharing rules of the CBRS band, base stations occasionally switch channels, especially when priority users enter the network. Finally, WaveFlex operates independently of the network itself, not requiring access to nor modification of the gNB or UEs, yet it remains compliant with and effective on prevailing cellular protocols. We have designed and fabricated WaveFlex on a custom multi-layer PCB, software defined radio based network monitor, and supporting control software and hardware. Our experimental evaluation benchmarks operational Private 5G and LTE networks running at full line rate. In a realistic indoor office scenario, 5G experimental results demonstrate an 8.58~dB average SNR gain, and an average throughput gain of 10.77 Mbps under a single gNB, and 12.84 Mbps under three gNBs, corresponding to throughput improvements of 18.4% and 19.5%, respectively.more » « less
-
The allocation of the 5G mmWave spectrum in the 26 GHz range, known as 3GPP band n258, has raised wide concern among the remote sensing and weather forecast communities due to the adjacency of this band with a frequency band used by passive sensors in Earth Exploration-Satellite Service (EESS). The concern stems from the potential radio frequency interference (RFI) caused by transmissions in the n258 band into the 23.8 GHz frequency, one of the key frequencies employed by weather satellite passive sensing instruments, such as AMSUA and ATMS, to measure atmospheric water vapor using its emission spectrum. Such RFI can bias satellite observations and compromise weather forecasting. In this paper, we develop a modeling and numerical framework to evaluate the potential effect of the 5G mmWave n258 band’s commercial deployment on numerical weather forecast accuracy. We first estimate and map the spatio-temporal distribution of 5G mmWave base stations at the county-level throughout the contiguous United States (US) using a model for technology adoption prediction. Then, the interference power received by the AMSU-A radiometer is estimated for a single base station based on models for signal transmission, out-of-band radiation, and radio propagation. Then, the aggregate interference power for each satellite observation footprint is calculated. Using the contaminated microwave observations, a series of simulations using a numerical weather prediction (NWP) model are conducted to study the impact of 5G-induced contamination on weather forecasting accuracy. For example, our results show that when the interference power at the radiometer from a single base station is at a level of −175 dBW for a network of base stations with spectral efficiency of 15 bit/s/Hz/BS, the aggregate interference power has limited impact in the year 2025 but can result in an induced noise in brightness temperature (contamination) of up to 17 K in the year 2040. Furthermore, that level of RFI can significantly impact the 12-hour forecast of a severe weather event such as the Super Tuesday Tornado Outbreak with forecasting errors of up to 10 mm in precipitation or a mean absolute error of 12.5%. It is also estimated that when the level of interference power received by the radiometer from a single base station is −200 dBW, then there is no impact on forecasting errors even in 2040.more » « less
An official website of the United States government

