skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Oyster Reef Restoration May Influence Local Sediment Geochemistry Prior to Introduction of Live Oysters
Oyster reefs provide crucial ecosystem services, but their populations are declining worldwide. Oyster reef restoration efforts are underway in many regions, including the Gulf Coast of the United States, where the intertidal oyster populations of the eastern oyster, Crassostrea virginica, have experienced significant declines. A novel method of restoration aimed at decreasing oyster mortality from predators through induction of predatory defenses has been implemented in coastal Alabama. The first step in this novel oyster reef restoration method is the deployment of a base layer of uninhabited oyster shells directly on the sediment prior to the introduction of live oysters. This study evaluated the impacts of the first step of this novel method of restoration, construction of the reef structure, on local sediment physicochemical characteristics. Results indicate that the vertical structure of the oyster reef affects sediment grain size and physicochemical properties. After 47 days, sediment pH increased from 8.29 ± 0.04 to 8.86 ± 0.03 with a concomitant increase in calcium carbonate from 0.509 ± 0.021 % to 0.818 ± 0.112 %. Despite many positive geochemical effects of oyster reef restoration being mediated by the presence of live oysters, the increased pH and calcium carbonate demonstrated herein represent more ideal conditions for oyster growth and survivability, potentially increasing the long-term efficacy of oyster reef restoration via this method.  more » « less
Award ID(s):
2150347
PAR ID:
10494141
Author(s) / Creator(s):
; ;
Publisher / Repository:
The University of Southern Mississippi, Aquila
Date Published:
Journal Name:
Gulf and Caribbean Research
Volume:
34
ISSN:
2572-1410
Page Range / eLocation ID:
SC40 to SC44
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Oyster populations within the coastal bays of Virginia have greatly declined, mainly due to overharvesting and disease, and past restoration efforts have largely focused on increasing their populations. Current restoration goals have now expanded to simultaneously procure the wider ecosystem services oysters can offer, including shoreline protection and ecosystem diversification. However, tradeoffs exist in designing artificial reefs because it is unlikely one design will optimize all services. This study compares the services provided by reef designs varying in elevation and width located adjacent to an intertidal marsh within a coastal bay of VA, USA. We quantified wave attenuation to determine potential coastal protection of the adjacent marsh, and changes to sediment composition and infaunal communities before and after reef construction for 3 years. After construction, we also quantified oyster size and population density to compare high and low elevation reef designs. High elevation reefs were more effective at attenuating waves and fostering oyster growth compared to low elevation reefs. Oysters atop high elevation reefs were on average approximately twice as dense and 20% larger than those on low elevation designs. Reef width had a minimal effect on oyster population density; densities on high and low reefs were similar for designs with one or three rows. The presence of oyster reefs also increased infaunal diversity and sediment organic matter. Our results indicate that artificial reef design can differentially affect the services provided through restoration, and elevation is especially important to consider when designing for oyster population enhancement and coastal protection. 
    more » « less
  2. Restoration of native oyster ( Crassostrea virginica ) populations in Chesapeake Bay shows great promise after three decades of failed attempts. Population models used to inform oyster restoration had integrated reef habitat quality, demonstrating that reef height determines oyster population persistence and resilience. Larval recruitment drives population dynamics of marine species, yet its impact with reef height and sediment deposition upon reef restoration is unknown. To assess the influence of reef height, sediment deposition and larval supply, we adapted a single-stage population model to incorporate stage structure using a system of four differential equations modeling change in juvenile density (J), and changes in volume of adults (A), oyster shell reef (R), and sediment (S) on an oyster reef. The JARS model was parameterized with empirical data from field experiments. Larval supply included larvae from the natal population and from outside populations. The stage-structured model possessed multiple non-negative equilibria (i.e., alternative stable states). Different initial conditions (e.g., oyster shell reef height) resulted in different final states. The main novel findings were that the critical reef height for population persistence and resilience was jointly dependent on sediment input and larval supply. A critical minimum larval supply was necessary for a reef to persist, even when initial sediment deposition was zero. As larval supply increased, the initial reef height needed for reef persistence was lowered, and oyster reef resilience was enhanced. A restoration oyster reef with higher larval influx could recover from more severe disturbances than a reef with lower larval influx. To prevent local extinction and assure a positive population state, higher levels of larval supply were required at greater sediment concentrations to overcome the negative effects of sediment accumulation on the reef. In addition, reef persistence was negatively related to sediment deposited on a reef prior to larval settlement and recruitment, implying that restoration reefs should be constructed immediately before settlement and recruitment to minimize sediment accumulation on a reef before settlement. These findings are valuable in oyster reef restoration because they can guide reef construction relative to larval supply and sediment deposition on a reef to yield effective and cost-efficient restoration strategies. 
    more » « less
  3. Oyster reef fauna counts and lengths were sampled at natural "reference" reefs and restored shell plant reefs located in the Virginia Coast Reserve. Overfishing and disease decimated oyster reefs in the Virginia Coast Reserve in the 1900s. Reference reefs were defined as remnant reefs that naturally recovered in the early 2000s to develop the pronounced vertical structure and multiple oyster size classes that represent the desired endpoint of restoration efforts. Nearly every year since 2003, The Nature Conservancy and Virginia Marine Resource Commission have constructed oyster reefs in intertidal areas in the VCR. To construct the restored reefs, practitioners launched dredged, fossilized oyster shell from barges to intertidal locations chosen for their bottom stability and accessibility (locations lacked oysters prior to construction). Whelk shell supplemented the oyster shell at some of the restored reefs. TNC practitioners monitor select restored and reference reefs annually for adult and spat live oysters, adult and spat box oysters, mud crabs, mud snails, oyster drills, live clams, and mussels. 
    more » « less
  4. Oysters,Crassostrea virginica, are economically and ecologically valuable but have severely declined, and restoration is needed. As with the restoration and aquaculture of many shellfish species, restored oyster reefs are often impeded by predation losses, reducing restoration success and restricting locations where restored reefs are viable. Like many organisms, shellfish can modify their morphology to reduce predation risk by detecting and responding to chemical signals emanating from predators and injured prey. Oysters grow heavier, stronger shells in response to predation risk cues, which improves their survival. We tested if using predator cues to trigger shell hardening in oysters could be performed over a scale suitable for oyster reef restoration and improve oyster survival long‐term. We constructed an intertidal oyster reef using oysters grown in a nursery for 4 weeks while exposed to either exudates from Blue crab (Callinectes sapidus) predators or grown in controls without predator cues. Oysters grown with predators were 65% harder than those grown in controls, and after 1 year in the field, had a 60% increase in survival. Predation losses on the restored reef were significant, and the benefit of predator induction for survival was highest at intermediate tidal elevations, presumably due to intermediate levels of predation and abiotic stress. Our results suggest that manipulating the morphology of cultivated or restored species can be an effective tool to improve survival in habitats where consumers impede restoration success. 
    more » « less
  5. Restoration of degraded estuarine oyster reefs typically involves deploying recycled oyster shell. In low‐salinity, low‐predation areas of estuaries, high‐volume shell deployments are known to improve flow conditions and thus oyster survival and growth. It is also hypothesized that the physical structure of restored reefs could suppress foraging by oyster predators in high‐salinity, high‐predation zones. That hypothesis is untested. Given limited resources, it is important to determine how much shell is needed for successful restoration and whether there are diminishing returns in shell addition. In Apalachicola Bay, Florida, we manipulated shell volume on an oyster reef to create three 0.4 ha areas of low (no shell addition), moderate (153 m3shell), and high (306 m3shell) habitat structure. We repeated experiments and surveys over 2 years to determine if restoration success increased with habitat structure. Predation on oysters was greater on the non‐shelled area than on the reshelled reefs, but similar between the two reshelled reefs. Oyster larval supply did not differ among the reef areas, but by the end of the experiment, oyster density (per unit area) increased quadratically with habitat structure, plateauing at high levels of structure. Model selection indicated that the most parsimonious explanation for these patterns was that increased habitat structure reduced predation and increased overall recruitment, but that the higher reshelling treatment did not have better outcomes than moderate reshelling. Thus, restoration could be optimized by deploying a moderate amount of shell per unit area. 
    more » « less