Abstract Volcanic seamount chains on the flanks of mid‐ocean ridges record variability in magmatic processes associated with mantle melting over several millions of years. However, the relative timing of magmatism on individual seamounts along a chain can be difficult to estimate withoutin situsampling and is further hampered by Ar40/Ar39dating limitations. The 8°20’N seamount chain extends ∼170 km west from the fast‐spreading East Pacific Rise (EPR), north of and parallel to the western Siqueiros fracture zone. Here, we use multibeam bathymetric data to investigate relationships between abyssal hill formation and seamount volcanism, transform fault slip, and tectonic rotation. Near‐bottom compressed high‐intensity radiated pulse, bathymetric, and sidescan sonar data collected with the autonomous underwater vehicleSentryare used to test the hypothesis that seamount volcanism is age‐progressive along the seamount chain. Although sediment on seamount flanks is likely to be reworked by gravitational mass‐wasting and current activity, bathymetric relief andSentryvehicle heading analysis suggest that sedimentary accumulations on seamount summits are likely to be relatively pristine. Sediment thickness on the seamounts' summits does not increase linearly with nominal crustal age, as would be predicted if seamounts were constructed proximal to the EPR axis and then aged as the lithosphere cooled and subsided away from the ridge. The thickest sediments are found at the center of the chain, implying the most ancient volcanism there, rather than on seamounts furthest from the EPR. The nonlinear sediment thickness along the 8°20’N seamounts suggests that volcanism can persist off‐axis for several million years.
more »
« less
Argon data for enriched MORB from the 8°20' N seamount chain
This dataset accompanies planned publication 'Near-Ridge Magmatism Constrained Using 40Ar/39Ar Dating of Enriched MORB from the 8°20' N Seamount Chain'. The Ar/Ar data are for samples that record the volcanic history of the area. The geochronology provides time constraints for the eruption of rocks studied in the manuscript. Samples were collected from the 8°20' N seamount chain by Molly Anderson (University of Florida), who sent them to the USGS Denver Argon Geochronology Laboratory for Ar/Ar analysis.
more »
« less
- Award ID(s):
- 2001314
- PAR ID:
- 10494143
- Publisher / Repository:
- U.S. Geological Survey
- Date Published:
- Subject(s) / Keyword(s):
- Geochronology
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
New field observations and 40 Ar/ 39 Ar geochronology reveal that the Topernawi Formation of the Ekitale Basin, northern Turkana Depression, Turkana County, Kenya was deposited entirely during the Oligocene between 29.7 ± 0.5 Ma and 29.24 ± 0.08 Ma. These bracketing ages are determined via new 40 Ar/ 39 Ar geochronology on a basaltic lava flow at the base of the section and a felsic ignimbrite near the top. A newly discovered basal unit and interbedded lava flow result in a new total sedimentary thickness of 92 m. The Topernawi Formation is the oldest dated syn-rift sedimentary section in the northern Turkana Depression.more » « less
-
New field observations and 40 Ar/ 39 Ar geochronology reveal that the Topernawi Formation of the Ekitale Basin, northern Turkana Depression, Turkana County, Kenya was deposited entirely during the Oligocene between 29.7 ± 0.5 Ma and 29.24 ± 0.08 Ma. These bracketing ages are determined via new 40 Ar/ 39 Ar geochronology on a basaltic lava flow at the base of the section and a felsic ignimbrite near the top. A newly discovered basal unit and interbedded lava flow result in a new total sedimentary thickness of 92 m. The Topernawi Formation is the oldest dated syn-rift sedimentary section in the northern Turkana Depression.more » « less
-
Abstract Seamount trails created by mantle plumes are often used to establish absolute reference frames for plate motion. When plume drift is considered, changes in seamount trail direction and age progression cannot be attributed to plate motion change alone. Here, improvements to age‐progressive models of eleven Pacific hotspot chains are made independently of plate motion models. Our approach involves bathymetry processing to robustly predict a smooth, continuous hotspot path by connecting maxima in filtered seamount bathymetry, with across‐track uncertainties from seamount trail width and amplitude. Published ages from seamount samples are projected orthogonally onto these paths. We determine best‐fit models of age as functions of along‐track distance, giving continuous age‐progression models for each seamount chain with uncertainties in age and geometry. Different sources of paleolatitudes are examined by incorporating data from the magnetization of seamount drill‐core samples, paleo‐poles from marine magnetic anomaly skewness inversions, and paleo‐spin‐axes inferred from shifts of equatorial sediments. Improved paleolatitude models for the Hawaiian‐Emperor and Louisville chains are determined by combining these different types of data. Paleolatitude models are predicted for other chains during periods when sufficient amounts of paleo‐pole or paleo‐spin‐axis data are available. Analysis of the eleven Pacific seamount chains provide constraints for future plate and plume motion models. We analyze the temporal change in distance between coeval seamounts, reflecting relative drifts between the hotspots at different times in the past. The observed changes imply systematic relative hotspot drifts compatible with paleolatitude trends.more » « less
-
The Northwestern Hawaiian Ridge is an age-progressive volcanic chain sourced from the Hawaiian mantle plume. Proximal to the Northwestern Hawaiian Ridge are several clusters of smaller seamounts and ridges with limited age constraints and unknown geodynamic origins. This study presents new bathymetric data and 40Ar/39Ar age determinations from lava flow samples recovered by remotely operated vehicle (ROV) from two east–west-trending chains of seamounts that lie north of the Pūhāhonu and Mokumanamana volcanoes. The previously unexplored Naifeh Chain (28°48′N,167°48′W) and Plumeria Chain (25°36′N, 164°35′W) contain five volcanic structures each, including three guyots in the Naifeh Chain. New 40Ar/39Ar age determinations indicate that the Naifeh Chain formed ca. 88 Ma and the Plumeria Chain ca. 85 Ma. The Cretaceous ages, coupled with a perpendicular orientation of the seamounts relative to absolute Pacific plate motion at that time, eliminate either a Miocene Hawaiian volcanic arch or Cretaceous mantle-plume origin. The seamounts lie on oceanic crust that is modeled to be 10–15 Ma older than the corresponding seamounts. Here, two models are put forth to explain the origin of these enigmatic seamount chains as well as the similar nearby Mendelssohn Seamounts. (1) Diffuse lithospheric extension results in the formation of these seamounts until the initiation of the Kula-Pacific spreading center in the north at 84–79 Ma, which alleviates the tension. (2) Shear-driven upwelling of enriched mantle material beneath young oceanic lithosphere results in an age-progressive seamount track that is approximately perpendicular to the spreading ridge. Here we show that all sampled seamounts proximal to the Northwestern Hawaiian Ridge are intraplate in nature, but their formations can be attributed to both plume and plate processes.more » « less
An official website of the United States government
