skip to main content


This content will become publicly available on March 5, 2025

Title: The stable exotic Cuntz algebras are higher-rank graph algebras

For each odd integern≥<#comment/>3n \geq 3, we construct a rank-3 graphΛ<#comment/>n\Lambda _nwith involutionγ<#comment/>n\gamma _nwhose realC∗<#comment/>C^*-algebraCR∗<#comment/>(Λ<#comment/>n,γ<#comment/>n)C^*_{\scriptscriptstyle \mathbb {R}}(\Lambda _n, \gamma _n)is stably isomorphic to the exotic Cuntz algebraEn\mathcal E_n. This construction is optimal, as we prove that a rank-2 graph with involution(Λ<#comment/>,γ<#comment/>)(\Lambda ,\gamma )can never satisfyCR∗<#comment/>(Λ<#comment/>,γ<#comment/>)∼<#comment/>MEEnC^*_{\scriptscriptstyle \mathbb {R}}(\Lambda , \gamma )\sim _{ME} \mathcal E_n, and Boersema reached the same conclusion for rank-1 graphs (directed graphs) in [Münster J. Math.10(2017), pp. 485–521, Corollary 4.3]. Our construction relies on a rank-1 graph with involution(Λ<#comment/>,γ<#comment/>)(\Lambda , \gamma )whose realC∗<#comment/>C^*-algebraCR∗<#comment/>(Λ<#comment/>,γ<#comment/>)C^*_{\scriptscriptstyle \mathbb {R}}(\Lambda , \gamma )is stably isomorphic to the suspensionSRS \mathbb {R}. In the Appendix, we show that theii-fold suspensionSiRS^i \mathbb {R}is stably isomorphic to a graph algebra iff−<#comment/>2≤<#comment/>i≤<#comment/>1-2 \leq i \leq 1.

 
more » « less
PAR ID:
10494198
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Mathematical Society (AMS)
Date Published:
Journal Name:
Proceedings of the American Mathematical Society, Series B
Volume:
11
Issue:
5
ISSN:
2330-1511
Format(s):
Medium: X Size: p. 47-62
Size(s):
p. 47-62
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe in terms of generators and relations the ring structure of theRO(C2)RO(C_2)-gradedC2C_2-equivariant stable stemsπ<#comment/>⋆<#comment/>C2\pi _\star ^{C_2}modulo the ideal of all nilpotent elements. As a consequence, we also record the ring structure of the homotopy groups of the rationalC2C_2-equivariant sphereπ<#comment/>⋆<#comment/>C2(SQ)\pi _\star ^{C_2}(\mathbb {S}_\mathbb {Q}).

     
    more » « less
  2. We develop a higher semiadditive version of Grothendieck-Witt theory. We then apply the theory in the case of a finite field to study the higher semiadditive structure of theK(1)K(1)-local sphereSK(1)\mathbb {S}_{K(1)}at the prime22, in particular realizing the non-22-adic rational element1+ε<#comment/>∈<#comment/>π<#comment/>0SK(1)1+\varepsilon \in \pi _0\mathbb {S}_{K(1)}as a “semiadditive cardinality.” As a further application, we compute and clarify certain power operations inπ<#comment/>0SK(1)\pi _0\mathbb {S}_{K(1)}.

     
    more » « less
  3. In this paper we derive the best constant for the followingL∞<#comment/>L^{\infty }-type Gagliardo-Nirenberg interpolation inequality‖<#comment/>u‖<#comment/>L∞<#comment/>≤<#comment/>Cq,∞<#comment/>,p‖<#comment/>u‖<#comment/>Lq+11−<#comment/>θ<#comment/>‖<#comment/>∇<#comment/>u‖<#comment/>Lpθ<#comment/>,θ<#comment/>=pddp+(p−<#comment/>d)(q+1),\begin{equation*} \|u\|_{L^{\infty }}\leq C_{q,\infty ,p} \|u\|^{1-\theta }_{L^{q+1}}\|\nabla u\|^{\theta }_{L^p},\quad \theta =\frac {pd}{dp+(p-d)(q+1)}, \end{equation*}where parametersqqandppsatisfy the conditionsp>d≥<#comment/>1p>d\geq 1,q≥<#comment/>0q\geq 0. The best constantCq,∞<#comment/>,pC_{q,\infty ,p}is given byCq,∞<#comment/>,p=θ<#comment/>−<#comment/>θ<#comment/>p(1−<#comment/>θ<#comment/>)θ<#comment/>pMc−<#comment/>θ<#comment/>d,Mc∫<#comment/>Rduc,∞<#comment/>q+1dx,\begin{equation*} C_{q,\infty ,p}=\theta ^{-\frac {\theta }{p}}(1-\theta )^{\frac {\theta }{p}}M_c^{-\frac {\theta }{d}},\quad M_c≔\int _{\mathbb {R}^d}u_{c,\infty }^{q+1} dx, \end{equation*}whereuc,∞<#comment/>u_{c,\infty }is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds whenu=Auc,∞<#comment/>(λ<#comment/>(x−<#comment/>x0))u=Au_{c,\infty }(\lambda (x-x_0))for any real numbersAA,λ<#comment/>>0\lambda >0andx0∈<#comment/>Rdx_{0}\in \mathbb {R}^d. In fact, the generalized Lane-Emden equation inRd\mathbb {R}^dcontains a delta function as a source and it is a Thomas-Fermi type equation. Forq=0q=0ord=1d=1,uc,∞<#comment/>u_{c,\infty }have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show thatuc,m→<#comment/>uc,∞<#comment/>u_{c,m}\to u_{c,\infty }andCq,m,p→<#comment/>Cq,∞<#comment/>,pC_{q,m,p}\to C_{q,\infty ,p}asm→<#comment/>+∞<#comment/>m\to +\inftyford=1d=1, whereuc,mu_{c,m}andCq,m,pC_{q,m,p}are the function achieving equality and the best constant ofLmL^m-type Gagliardo-Nirenberg interpolation inequality, respectively.

     
    more » « less
  4. We introduce the notions of symmetric and symmetrizable representations ofSL2⁡<#comment/>(Z){\operatorname {SL}_2(\mathbb {Z})}. The linear representations ofSL2⁡<#comment/>(Z){\operatorname {SL}_2(\mathbb {Z})}arising from modular tensor categories are symmetric and have congruence kernel. Conversely, one may also reconstruct modular data from finite-dimensional symmetric, congruence representations ofSL2⁡<#comment/>(Z){\operatorname {SL}_2(\mathbb {Z})}. By investigating aZ/2Z\mathbb {Z}/2\mathbb {Z}-symmetry of some Weil representations at prime power levels, we prove that all finite-dimensional congruence representations ofSL2⁡<#comment/>(Z){\operatorname {SL}_2(\mathbb {Z})}are symmetrizable. We also provide examples of unsymmetrizable noncongruence representations ofSL2⁡<#comment/>(Z){\operatorname {SL}_2(\mathbb {Z})}that are subrepresentations of a symmetric one.

     
    more » « less
  5. Proving the “expectation-threshold” conjecture of Kahn and Kalai [Combin. Probab. Comput. 16 (2007), pp. 495–502], we show that for any increasing propertyF\mathcal {F}on a finite setXX,\[pc(F)=O(q(F)log⁡<#comment/>ℓ<#comment/>(F)),p_c(\mathcal {F})=O(q(\mathcal {F})\log \ell (\mathcal {F})),\]wherepc(F)p_c(\mathcal {F})andq(F)q(\mathcal {F})are the threshold and “expectation threshold” ofF\mathcal {F}, andℓ<#comment/>(F)\ell (\mathcal {F})is the maximum of22and the maximum size of a minimal member ofF\mathcal {F}.

     
    more » « less