skip to main content


Title: Effect of V Content on Corrosion Behavior of Al-V Alloys Produced by Mechanical Alloying and Subsequent Spark Plasma Sintering

Al-V alloys produced via high-energy ball milling have been reported to show simultaneous improvement of corrosion resistance and mechanical properties compared to traditional Al alloys. In these alloys, V content plays a crucial role in increasing or decreasing the corrosion resistance. Therefore, the effect of V and microstructure on corrosion of high-energy ball milled and subsequently spark plasma sintered Al-xV alloys (x = 2, 5, 10 at%) has been studied. Cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopic analysis revealed the increment of V content up to 5 at% enhanced the corrosion resistance of the alloy. However, highly heterogeneous microstructure in Al-10 at%V resulted in significant localized corrosion over the immersion time. The electrochemical impedance spectroscopy studies over 14 days of immersion revealed underlying corrosion mechanisms.

 
more » « less
NSF-PAR ID:
10494332
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
171
Issue:
3
ISSN:
0013-4651
Format(s):
Medium: X Size: Article No. 031501
Size(s):
["Article No. 031501"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Nanocrystalline supersaturated Al-V alloys produced by high-energy ball milling have been reported to exhibit enhanced corrosion resistance and mechanical properties compared to commercial Al alloys. Corrosion of passive alloys such as Al-V alloy relies on the characteristics of the surface film, which is studied using scanning/transmission electron microscopy and time-of-flight secondary ion mass spectrometry. The effect of microstructure and composition on the surface film has been investigated after different immersion periods (30 min, 2 h, and 1 day) in 0.1 M NaCl. The surface film was complex and composed of oxidized Al and V. The heterogeneous surface film was observed due to the presence of secondary phases and initiation of localized corrosion. The void formation was observed beneath the surface film that would potentially cause pitting corrosion. The generation of nano-sized voids was dependent on grain orientation. Compared to pure Al, the chloride penetration is suppressed in Al-V alloys. The effect of composition and microstructure on surface film formation and attendant corrosion behavior is discussed herein.

     
    more » « less
  2. Abstract

    Supersaturated solid solutions of Al and corrosion-resistant alloying elements (M: V, Mo, Cr, Ti, Nb), produced by non-equilibrium processing techniques, have been reported to exhibit high corrosion resistance and strength. The corrosion mechanism for such improved corrosion performance has not been well understood. We present a fundamental understanding of the role of V in corrosion of an Al-V alloy, which will provide a theoretical background for developing corrosion-resistant Al alloys. High-energy ball milling of the elemental powder of Al and V produced an in situ consolidated Al-V alloy, which exhibited high solid solubility of V. The corrosion resistance of Al-V alloy was significantly higher than that of pure Al, which was attributed to the (1) enrichment of V at the passive film/substrate interface, (2) incorporation of V into the passive film, and (3) deposition of V on the iron-containing cathodic particles and therefore, retardation of cathodic reaction.

     
    more » « less
  3. null (Ed.)
    Magnesium–yttrium-rare earth element alloys such as WE43 are potential candidates for future bioabsorbable orthopedic implant materials due to their biocompatibility, mechanical properties similar to human bone, and the ability to completely degrade in vivo . Unfortunately, the high corrosion rate of WE43 Mg alloys in physiological environments and subsequent loss of structural integrity limit the wide applications of these materials. In this study, the effect of chemical heterogeneity and microstructure on the corrosion resistance of two alloys with different metallurgical states was investigated: cast (as in traditional preparation) and as-deposited produced by magnetron sputtering. The corrosion behavior was studied by potentiodynamic polarization and electrochemical impedance spectroscopy tests in blood bank buffered saline solution. It was found that the as-deposited alloy showed more than one order of magnitude reduction in corrosion current density compared to the cast alloy, owing to the elimination of micro-galvanic coupling between the Mg matrix and the precipitates. The microstructure and formation mechanism of corrosion products formed on both alloys were discussed based on immersion tests and direct measurements of X-ray photoelectron spectrometry (XPS) and cross-sectional transmission electron microscopy (TEM) analysis. 
    more » « less
  4. null (Ed.)
    In this work, nine nanocrystalline binary Mg alloys were synthesized by high-energy ball milling. The compositions, Mg-5 wt% M (M-Cr, Ge, Mn, Mo, Ta, Ti, V, Y, and Zn), were milled with the objective of achieving non-equilibrium alloying. The milled alloys were consolidated via cold compaction (CC) at 25°C and spark plasma sintering (SPS) at 300°C. X-ray diffraction (XRD) analysis indicated grain refinement below 100 nm, and the scanning electron microscopy revealed homogeneous microstructures for all compositions. XRD analysis revealed that most of the alloys showed a change in the lattice parameter, which indicates the formation of a solid solution. A significant increase in the hardness compared to unmilled Mg was observed for all of the alloys. The corrosion behavior was improved in all of the binary alloys compared to milled Mg. A significant decrease in the cathodic kinetics was evident due to Ge and Zn additions. The influence of the alloying elements on corrosion behavior has been categorized and discussed based on the electrochemical response of their respective binary Mg alloys. 
    more » « less
  5. The time-dependent corrosion behavior of pure aluminum (Al) in a chloride-containing environment was investigated using various electrochemical and characterization techniques for up to 336 h. Transmission electron microscopic and secondary ion mass spectroscopic analysis revealed the continuous dissolution of the surface film over the immersion time. In the meantime, the increasing passive oxide thickness resulted in the surface film resistance enhancement over the immersion time, as indicated by the electrochemical impedance spectroscopic analysis. The electrochemical noise measurements showed an increase in the corrosion kinetics with immersion time until 60 h because of the accelerated localized corrosion in the early stage of immersion. However, an inhibition in corrosion kinetics occurred after longer immersion times due to corrosion product deposition inside the pit.

     
    more » « less