skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intelligence Sparse Sensor Network for Automatic Early Evaluation of General Movements in Infants
Abstract General movements (GMs) have been widely used for the early clinical evaluation of infant brain development, allowing immediate evaluation of potential development disorders and timely rehabilitation. The infants’ general movements can be captured digitally, but the lack of quantitative assessment and well‐trained clinical pediatricians presents an obstacle for many years to achieve wider deployment, especially in low‐resource settings. There is a high potential to explore wearable sensors for movement analysis due to outstanding privacy, low cost, and easy‐to‐use features. This work presents a sparse sensor network with soft wireless IMU devices (SWDs) for automatic early evaluation of general movements in infants. The sparse network consisting of only five sensor nodes (SWDs) with robust mechanical properties and excellent biocompatibility continuously and stably captures full‐body motion data. The proof‐of‐the‐concept clinical testing with 23 infants showcases outstanding performance in recognizing neonatal activities, confirming the reliability of the system. Taken together with a tiny machine learning algorithm, the system can automatically identify risky infants based on the GMs, with an accuracy of up to 100% (99.9%). The wearable sparse sensor network with an artificial intelligence‐based algorithm facilitates intelligent evaluation of infant brain development and early diagnosis of development disorders.  more » « less
Award ID(s):
2309323 2319139 2401745
PAR ID:
10494362
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
11
Issue:
19
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Background How the brain develops accurate models of the external world and generates appropriate behavioral responses is a vital question of widespread multidisciplinary interest. It is increasingly understood that brain signal variability—posited to enhance perception, facilitate flexible cognitive representations, and improve behavioral outcomes—plays an important role in neural and cognitive development. The ability to perceive, interpret, and respond to complex and dynamic social information is particularly critical for the development of adaptive learning and behavior. Social perception relies on oxytocin-regulated neural networks that emerge early in development. Methods We tested the hypothesis that individual differences in the endogenous oxytocinergic system early in life may influence social behavioral outcomes by regulating variability in brain signaling during social perception. In study 1, 55 infants provided a saliva sample at 5 months of age for analysis of individual differences in the oxytocinergic system and underwent electroencephalography (EEG) while listening to human vocalizations at 8 months of age for the assessment of brain signal variability. Infant behavior was assessed via parental report. In study 2, 60 infants provided a saliva sample and underwent EEG while viewing faces and objects and listening to human speech and water sounds at 4 months of age. Infant behavior was assessed via parental report and eye tracking. Results We show in two independent infant samples that increased brain signal entropy during social perception is in part explained by an epigenetic modification to the oxytocin receptor gene ( OXTR ) and accounts for significant individual differences in social behavior in the first year of life. These results are measure-, context-, and modality-specific: entropy, not standard deviation, links OXTR methylation and infant behavior; entropy evoked during social perception specifically explains social behavior only; and only entropy evoked during social auditory perception predicts infant vocalization behavior. Conclusions Demonstrating these associations in infancy is critical for elucidating the neurobiological mechanisms accounting for individual differences in cognition and behavior relevant to neurodevelopmental disorders. Our results suggest that an epigenetic modification to the oxytocin receptor gene and brain signal entropy are useful indicators of social development and may hold potential diagnostic, therapeutic, and prognostic value. 
    more » « less
  2. Neuromuscular diseases pose significant health and economic challenges, necessitating innovative monitoring technologies for personalizable treatment. Existing devices detect muscular motions either indirectly from mechanoacoustic signatures on skin surface or via ultrasound waves that demand specialized skin adhesion. Here, we report a wireless wearable system, Laryngeal Health Monitor (LaHMo), designed to be conformally placed on the neck for continuously measuring movements of underlying muscles. The system uses near-infrared (NIR) light that features deep-tissue penetration and strong interaction with myoglobin to capture muscular locomotion. The incorporated inertial measurement unit sensor further decouples the superposition of signals from NIR recordings. Integrating a multimodal AI-boosted algorithm based on recurrent neural network, the system accurately classifies activities of physiological events. An adaptive model enables fast individualization without enormous data sources from the target user, facilitating its broad applicability. Long-term tests and simulations suggest the potential efficacy of the LaHMo platform for real-world applications, such as monitoring disease progression in neuromuscular disorders, evaluating treatment efficacy, and providing biofeedback for rehabilitation exercises. The LaHMo platform may serve as a general noninvasive, user-friendly solution for assessing neuromuscular function beyond the anterior neck, potentially improving diagnostics and treatment of various neuromuscular disorders. 
    more » « less
  3. Early intervention to address developmental disability in infants has the potential to promote improved outcomes in neurodevelopmental structure and function [1]. Researchers are starting to explore Socially Assistive Robotics (SAR) as a tool for delivering early interventions that are synergistic with and enhance human-administered therapy. For SAR to be effective, the robot must be able to consistently attract the attention of the infant in order to engage the infant in a desired activity. This work presents the analysis of eye gaze tracking data from five 6-8 month old infants interacting with a Nao robot that kicked its leg as a contingent reward for infant leg movement. We evaluate a Bayesian model of lowlevel surprise on video data from the infants’ head-mounted camera and on the timing of robot behaviors as a predictor of infant visual attention. The results demonstrate that over 67% of infant gaze locations were in areas the model evaluated to be more surprising than average. We also present an initial exploration using surprise to predict the extent to which the robot attracts infant visual attention during specific intervals in the study. This work is the first to validate the surprise model on infants; our results indicate the potential for using surprise to inform robot behaviors that attract infant attention during SAR interactions. 
    more » « less
  4. Full-duplex (FD) wireless is an attractive communication paradigm with high potential for improving network capacity and reducing delay in wireless networks. Despite significant progress on the physical layer development, the challenges associated with developing medium access control (MAC) protocols for heterogeneous networks composed of both legacy half-duplex (HD) and emerging FD devices have not been fully addressed. In [1], we focused on the design and performance evaluation of scheduling algorithms for heterogeneous HD-FD networks and presented the distributed Hybrid-Greedy Maximal Scheduling (H-GMS) algorithm. H-GMS combines the centralized Greedy Maximal Scheduling (GMS) and a distributed queue-based random-access mechanism, and is throughput-optimal. In this paper, we analyze the delay performance of H-GMS by deriving two lower bounds on the average queue length. We also evaluate the fairness and delay performance of H-GMS via extensive simulations. We show that in heterogeneous HD-FD networks, H-GMS achieves$$16-30\times$$ better delay performance and improves fairness between FD and HD users by up to 50% compared with the fully decentralized Q-CSMA algorithm. 
    more » « less
  5. Abstract—Full-duplex (FD) wireless is an attractive commu- nication paradigm with high potential for improving network capacity and reducing delay in wireless networks. Despite sig- nificant progress on the physical layer development, the chal- lenges associated with developing medium access control (MAC) protocols for heterogeneous networks composed of both legacy half-duplex (HD) and emerging FD devices have not been fully addressed. In [1], we focused on the design and performance evaluation of scheduling algorithms for heterogeneous HD-FD networks and presented the distributed Hybrid-Greedy Maximal Scheduling (H-GMS) algorithm. H-GMS combines the central- ized Greedy Maximal Scheduling (GMS) and a distributed queue- based random-access mechanism, and is throughput-optimal. In this paper, we analyze the delay performance of H-GMS by deriving two lower bounds on the average queue length. We also evaluate the fairness and delay performance of H-GMS via extensive simulations. We show that in heterogeneous HD-FD networks, H-GMS achieves 16–30× better delay performance and improves fairness between FD and HD users by up to 50% compared with the fully decentralized Q-CSMA algorithm. 
    more » « less