skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust Identification of Graph Structure
Partial correlations (PCs) and the related inverse covariance matrix adopted by graphical lasso, are widely applicable tools for learning graph connectivity given nodal observations. The resultant estimators however, can be sensitive to outliers. Robust approaches developed so far to cope with outliers do not (explicitly) account for nonlinear interactions possibly present among nodal processes. This can hurt the identification of graph connectivity, merely due to model mismatch. To overcome this limitation, a novel formulation of robust PC is introduced based on nonlinear kernel functions. The proposed scheme leverages robust ridge regression techniques, spectral Fourier feature based kernel approximants, and robust association measures. Numerical tests on synthetic and real data illustrate the potential of the novel approach.  more » « less
Award ID(s):
2312547 1901134 2212318 2220292
PAR ID:
10494466
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-4452-3
Page Range / eLocation ID:
486 to 490
Format(s):
Medium: X
Location:
Herradura, Costa Rica
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph-guided learning has well-documented impact in a gamut of network science applications. A prototypical graph-guided learning task deals with semi-supervised learning over graphs, where the goal is to predict the nodal values or labels of unobserved nodes, by leveraging a few nodal observations along with the underlying graph structure. This is particularly challenging under privacy constraints or generally when acquiring nodal observations incurs high cost. In this context, the present work puts forth a Bayesian graph-driven self-supervised learning (Self-SL) approach that: (i) learns powerful nodal embeddings emanating from easier to solve auxiliary tasks that map local to global connectivity information; and, (ii) adopts an ensemble of Gaussian processes (EGPs) with adaptive weights as nodal embeddings are processed online. Unlike most existing deterministic approaches, the novel approach offers accurate estimates of the unobserved nodal values along with uncertainty quantification that is important especially in safety critical applications. Numerical tests on synthetic and real graph datasets showcase merits of the novel EGP-based Self-SL method. 
    more » « less
  2. In this paper, the relationship between functional and structural brain networks is investigated by training a graph encoder-decoder system to learn the mapping from brain structural connectivity (SC) to functional connectivity (FC). Our work leverages a graph convolutional network (GCN) model in the encoder which integrates both nodal attributes and the network topology information to generate new graph representations in lower dimensions. Using brain SC graphs as inputs, the novel GCN-based encoder-decoder system manages to account for both direct and indirect interactions between brain regions to reconstruct the empirical FC networks. In doing so, the latent variables within the system (i.e., the learnt low-dimensional embeddings) capture important information regarding the relation between functional and structural networks. By decomposing the reconstructed functional networks in terms of the output of each graph convolution filter, we can extract those brain regions which contribute most to the generation of FC networks from their SC counterparts. Experiments on a large population of healthy subjects from the Human Connectome Project show our model can learn a generalizable and interpretable SC-FC relationship. Overall, results here support the promising prospect of using GCNs to discover more about the complex nature of human brain activity and function. 
    more » « less
  3. Machine learning (ML)-based data-driven methods have promoted the progress of modeling in many engineering domains. These methods can achieve high prediction and generalization performance for large, high-quality datasets. However, ML methods can yield biased predictions if the observed data (i.e., response variable y) are corrupted by outliers. This paper addresses this problem with a novel, robust ML approach that is formulated as an optimization problem by coupling locally weighted least-squares support vector machines for regression (LWLS-SVMR) with one weight function. The weight is a function of residuals and allows for iteration within the proposed approach, significantly reducing the negative interference of outliers. A new efficient hybrid algorithm is developed to solve the optimization problem. The proposed approach is assessed and validated by comparison with relevant ML approaches on both one-dimensional simulated datasets corrupted by various outliers and multi-dimensional real-world engineering datasets, including datasets used for predicting the lateral strength of reinforced concrete (RC) columns, the fuel consumption of automobiles, the rising time of a servomechanism, and dielectric breakdown strength. Finally, the proposed method is applied to produce a data-driven solver for computational mechanics with a nonlinear material dataset corrupted by outliers. The results all show that the proposed method is robust against non-extreme and extreme outliers and improves the predictive performance necessary to solve various engineering problems. 
    more » « less
  4. Higher-order link prediction (HOLP) seeks missing links capturing dependencies among three or more network nodes. Predicting high-order links (HOLs) can for instance reveal hyperlinks in the structure of drug substance and metabolic networks. Existing methods either make restrictive assumptions regarding the emergence of HOLs, or, they rely on reduced dimensionality models of limited expressiveness. To overcome these limitations, the HOLP approach developed here leverages distribution similarities across embeddings as captured by a learnable probability metric. The intuition underpinning the novel approach is that sets of nodes whose embeddings are less similar in distribution, are less likely to be connected by a HOL. Specifically, nonlinear dimensionality reduction is effected through a Gaussian process latent variable model that yields nodal embeddings, and also learns a data-driven similarity function (kernel). This kernel forms the core of a maximum mean discrepancy probability metric. Tests on benchmark datasets illustrate the potential of the proposed approach. 
    more » « less
  5. We develop algorithms for online topology inference from streaming nodal observations and partial connectivity information; i.e., a priori knowledge on the presence or absence of a few edges may be available as in the link prediction problem. The observations are modeled as stationary graph signals generated by local diffusion dynamics on the unknown network. Said stationarity assumption implies the simultaneous diagonalization of the observations' covariance matrix and the so-called graph shift operator (GSO), here the adjacency matrix of the sought graph. When the GSO eigenvectors are perfectly obtained from the ensemble covariance, we examine the structure of the feasible set of adjacency matrices and its dependency on the prior connectivity information available. In practice one can only form an empirical estimate of the covariance matrix, so we develop an alternating algorithm to find a sparse GSO given its imperfectly estimated eigenvectors. Upon sensing new diffused observations in the streaming setting, we efficiently update eigenvectors and perform only one (or a few) online iteration(s) of the proposed algorithm until a new datum is observed. Numerical tests showcase the effectiveness of the novel batch and online algorithms in recovering real-world graphs. 
    more » « less