Amorphous Li 3 PS 4 (LPS) solid-state electrolytes are promising for energy-dense lithium metal batteries. LPS glass, synthesized from a 3 : 1 mol ratio of Li 2 S and P 2 S 5 , has high ionic conductivity and can be synthesized by ball milling or solution processing. Ball milling has been attractive because it provides the easiest route to access amorphous LPS with a conductivity of 3.5 × 10 −4 S cm −1 (20 °C). However, achieving the complete reaction of precursors via ball milling can be difficult, and most literature reports use X-ray diffraction (XRD) or Raman spectroscopy to confirm sample purity, both of which have limitations. Furthermore, the effect of residual precursors on ionic conductivity and lithium metal cycling is unknown. In this work, we illustrate the importance of multimodal characterization to determine LPS phase and chemical purity. To determine the residual Li 2 S content in LPS, we show that (1) XRD and 31 P solid state nuclear magnetic resonance (ssNMR) are insufficient and (2) Raman loses sensitivity at concentrations below 12 mol% Li 2 S. Most importantly, we show that 7 Li ssNMR is highly sensitive. Using 7 Li ssNMR, we investigate the effect of ball milling parameters and develop a robust and highly reproducible procedure for pure LPS synthesis. We find that as the residual Li 2 S precursor content increases, LPS conductivity decreases and lithium metal batteries exhibit higher overpotentials and poor cycle life. Our work reveals the importance of multimodal characterization techniques for amorphous solid-state electrolyte characterization and will enable better synthetic strategies for highly conductive electrolytes for efficient energy-dense solid-state lithium metal batteries.
more »
« less
Impact of Processing Methodology on the Performance of Hybrid Sulfide-Polymer Solid State Electrolytes for Lithium Metal Batteries
Hybrid sulfide-polymer composite electrolytes are promising candidates to enable lithium metal batteries because of their high ionic conductivity and flexibility. These composite materials are primarily prepared through solution casting methods to obtain a homogenous distribution of polymer within the inorganic. However, little is known about the influence of the morphology of the polymer and the inorganic on the ionic conductivity and electrochemical behavior of these hybrid systems. In this study, we assess the impact of processing methodology, either solution processing or solvent-free ball milling, on overall performance of hybrid electrolytes containing amorphous Li3PS4(LPS) and non-reactive polyethylene (PE). We demonstrate that using even non-polar, non-reactive solvents can alter the LPS crystalline structure, leading to a lower ionic conductivity. Additionally, we show that ball milling leads to a non-homogenous distribution of polymer within the inorganic, which leads to a higher ionic conductivity than samples processed via solution casting. Our work demonstrates that the morphology of the polymer and the sulfide plays a key role in the ionic conductivity and subsequent electrochemical stability of these hybrid electrolytes.
more »
« less
- PAR ID:
- 10494526
- Publisher / Repository:
- The Electrochemical Society
- Date Published:
- Journal Name:
- Journal of The Electrochemical Society
- Volume:
- 171
- Issue:
- 3
- ISSN:
- 0013-4651
- Format(s):
- Medium: X Size: Article No. 030508
- Size(s):
- Article No. 030508
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Rechargeable solid‐state sodium metal batteries (SSMBs) experience growing attention owing to the increased energy density (vs Na‐ion batteries) and cost‐effective materials. Inorganic sulfide‐based Na‐ion conductors also possess significant potential as promising solid electrolytes (SEs) in SSMBs. Nevertheless, due to the highly reactive Na metal, poor interface compatibility is the biggest obstacle for inorganic sulfide solid electrolytes such as Na3SbS4to achieve high performance in SSMBs. To address such electrochemical instability at the interface, new design of sulfide SE nanostructures and interface engineering are highly essential. In this work, a facile and straightforward approach is reported to prepare 3D sulfide‐based solid composite electrolytes (SCEs), which utilize porous Na3SbS4(NSS) as a self‐templated framework and fill with a phase transition polymer. The 3D structured SCEs display obviously improved interface stability toward Na metal than pristine sulfide. The assembled SSMBs (with TiS2or FeS2as cathodes) deliver outstanding electrochemical cycling performance. Moreover, the cycling of high‐voltage oxide cathode Na0.67Ni0.33Mn0.67O2(NNMO) is also demonstrated in SSMBs using 3D sulfide‐based SCEs. This study presents a novel design on the self‐templated nanostructure of SCEs, paving the way for the advancement of high‐energy sodium metal batteries.more » « less
-
Structural supercapacitors, capable of bearing mechanical loads while storing electrical energy, hold great promise for enhancing mobile system efficiencies. However, developing practical structural supercapacitors often involves a challenging balance between mechanical and electrochemical performance, particularly in their electrolytes. Traditional research has focused on bi-continuous phase electrolytes (BPEs), which typically comprise high liquid content that weakens mechanical strength, and inert solid phases that hinder ion conduction and block electrode surfaces. Our previous work introduces a novel approach with a hydrated polymer electrolyte, demonstrating enhanced multifunctionality. This electrolyte, derived from controlled hydration of PET-LiClO4, forms a trihydrate (LiClO4∙3H2O) structure, where water molecules bond with ions without forming a liquid phase, thereby improving ion mobility while maintaining the base polymer's mechanical properties. This new design also promotes better electrochemical interfaces with electrodes, a significant advancement over traditional BPEs. In this study, we further enhance the performance and processability of such hydrated polymer electrolytes by incorporating polylactic acid (PLA) as the base polymer and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the salt. The electrolyte, prepared through solution casting and subsequent controlled hydration, consistently remains an amorphous solid solution in both dry and hydrated states, as confirmed by DSC, XRD, and FTIR analyses. Our tests on ionic conductivity and mechanical properties reveal that adding water to the polymer electrolyte substantially increases ionic conductivity while retaining mechanical properties. A specific composition demonstrated a remarkable increase in ionic conductivity coupled with superior toughness surpassing the base polymer. Furthermore, we successfully fabricated and tested structural supercapacitor devices made of composites of carbon fibers and these new electrolytes. The prototypes presented enhanced toughness with significant energy storage performance, demonstrating their vast application potential due to their outstanding multifunctionality.more » « less
-
Hybrid solid electrolytes are composed of organic (polymer) and inorganic (ceramic) ion conducting materials, and are promising options for large-scale production of solid state lithium–metal batteries. Hybrid solid electrolytes containing 15 vol% Al-LLZO demonstrate optimal ionic conductivity properties. Ionic conductivity is shown to decrease at high inorganic loadings. This optimum is most obvious above the melting temperature of polyethylene oxide where the polymer is amorphous. Structural analysis using synchrotron nanotomography reveals that the inorganic particles are highly aggregated. The aggregation size grows with inorganic content and the largest percolating clusters measured for 5 vol%, 15 vol% and 50 vol% were ∼12 μm 3 , 206 μm 3 , and 324 μm 3 , respectively. Enhanced transport in hybrid electrolytes is shown to be due to polymer|particle (Al-LLZO) interactions and ionic conductivity is directly related to the accessible surface area of the inorganic particles within the electrolyte. Ordered and well-dispersed structures are ideal for next generation hybrid solid electrolytes.more » « less
-
The rapid growth of mobile, portable, wearable and flexible electronics leads to the increasing demand for energy storage devices using solid-state polymer electrolytes (PEs), which outperform liquid electrolytes in terms of safety, mechanical properties, and simplicity of device fabrication and packaging. However, processing PEs will always introduce solvent molecules that greatly affect the ionic conductivity and mechanical properties. For example, PEs prepared through solution-casting methods always have solvent residues. A trace amount of water molecules absorbed from the air is also inevitable. Recently, we demonstrated the controlled introduction of solvent molecules to PEs to balance the ionic conductivity and mechanical stiffness for structural energy storage applications. To better understand how solvent molecules behave and interact with other components in PEs, here we present the molecular dynamics simulation of a representative polymer electrolyte system with various water content. We use simulation results to determine the effect of trace water content before forming a liquid phase on ionic conductivity and mechanical properties. The insights into the molecular interactions in the PE system will help us design and optimize Pes’ composition and processing for practical applications. The simulation model of polymer electrolyte is built with polyethylene oxide (PEO) and lithium perchlorate (LiClO4) with various water contents, in which the water molecule to lithium-ion ratio ranges from 0 to 3. The electrolyte with each water content is simulated between two graphene electrodes to determine its ionic conductivity. Uniaxial deformation has been performed on the electrolyte to obtain the mechanical properties. All simulations were performed using the molecular dynamics simulation code LAMMPS with the CHARMM force field. The results show that the ionic conductivity of the polymer electrolyte system increases significantly (up to one order of magnitude) with the increase of water content (up to 3 water molecules per lithium ion), even when the added water does not form a continuous liquid phase. The change of ionic conductivity with water content is correlated to the degree of association between different types of ions or molecules in the system, as evidenced by the evaluation of the radial distribution functions. As the association between polymer molecules and lithium ions reduces with increasing water, it becomes easier for the lithium ions to diffuse and resulting in higher ionic conductivity. It is also observed that the perchlorate ions’ interactions with polymer molecules remain the same with different water contents, which shows different roles of lithium ions and perchlorate ions in ion conduction in this system. On the other hand, the modulus of elasticity of the polymer electrolyte does not change much with the increase of water, which agrees with the previous experimental work of our group. This means that the trace amount of water is strongly associated with other solid molecules or ions and is not affecting the stiffness of the system as long as no liquid phase is formed. The results will lead to novel strategies to design polymer electrolytes with both high ionic conductivity and good mechanical properties for flexible or multifunctional energy storage applications.more » « less
An official website of the United States government
