skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid Changes in Strength and Direction of Earth's Magnetic Field Over the Past 100,000 Years
Abstract Previous studies of rapid geomagnetic changes have highlighted the most extreme changes in direction and field strength found in paleomagnetic field models over the past 100 ky. Here we study distributions of rates of change in both time and space. Field models based on direct observations provide the most accurate values for rates of change, but their short duration precludes a complete description of field behavior. Broader representation is provided by time‐varying paleofield models, here including GGF100k, GGFSS70, LSMOD.2, CALS10k.2, HFM.OL1.A1, pfm9k.2, and SHAWQ‐iron age although variability across models and lack of temporal and spatial resolution of fine scale variations make direct comparisons difficult. For the paleofield we define rapid changes as exceeding the peak overall value of 0.4° yr−1for directional changes and 150 nT yr−1for intensities as established by thegufm1model spanning 1590–1990 CE. We find that rapid directional changes are associated with low field strength and can spread across all latitudes during such episodes. Distributions of directional rates of change exhibit high skewness for models that include excursions. Rates of change in field intensity exceeding 150 nT yr−1arise in brief intervals during the Holocene particularly associated with the strong field Levantine Iron Age Anomaly. Around the Laschamp excursion there are also rare localized occurrences of rapid intensity change. Limitations in current models make it difficult to define absolute rates for past changes, but we see that rapid changes are essential field characteristics not observed in the modern field that should nevertheless be regarded as an essential for Earth‐like dynamo simulations.  more » « less
Award ID(s):
1953778
PAR ID:
10494541
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
25
Issue:
3
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract How tectonic forcing, expressed as base level change, is encoded in the stratigraphic and geomorphic records of coupled source‐to‐sink systems remains uncertain. Using sedimentological, geochronological and geomorphic approaches, we describe the relationship between transient topographic change and sediment deposition for a low‐storage system forced by rapid rock uplift. We present five new luminescence ages and two terrestrial cosmogenic nuclide paleo‐erosion rates for the late Pleistocene Pagliara fan‐delta complex and we model corresponding base level fall history and erosion of the source catchment located on the Ionian flank of the Peloritani Mountains (NE‐Sicily, Italy). The Pagliara delta complex is part of the broader Messina Gravel‐and‐Sands lithostratigraphic unit that outcrops along the Peloritani coastal belt as extensional basins have been recently inverted by both normal faults and regional uplift at the Messina Straits. The deltas exposed at the mouth of the Pagliara River have constructional tops at ca. 300 m a.s.l. and onlap steeply east‐dipping bedrock at the coast to thickness between ca. 100 and 200 m. Five infrared‐stimulated luminescence (IRSL) ages collected from the delta range in age from ca. 327 to 208 ka and indicate a vertical long‐term sediment accumulation rate as rapid as ca. 2.2 cm/yr during MIS 7. Two cosmogenic10Be concentrations measured in samples of delta sediment indicate paleo‐erosion rates during MIS 8–7 near or slightly higher than the modern rates of ca. 1 mm/yr. Linear inversion of Pagliara fluvial topography indicates an unsteady base level fall history in phase with eustasy that is superimposed on a longer, tectonically driven trend that doubled in rate from ca. 0.95 to 1.8 mm/yr in the past 150 ky. The combination of footwall uplift rate and eustasy determines the accommodation space history to trap the fan‐deltas at the Peloritani coast in hanging wall basins, which are now inverted, uplifted and exposed hundreds of metres above the sea level. 
    more » « less
  2. Abstract The recent superstorm of 2024 May 10–11 is the second largest geomagnetic storm in the space age and the only one that has simultaneous interplanetary data (there were no interplanetary data for the 1989 March storm). The May superstorm was characterized by a sudden impulse (SI+) amplitude of +88 nT, followed by a three-step storm main-phase development, which had a total duration of ∼9 hr. The cause of the first storm main phase with a peak SYM-H intensity of −183 nT was a fast-forward interplanetary shock (magnetosonic Mach numberMms∼ 7.2) and an interplanetary sheath with a southward interplanetary magnetic field componentBsof ∼40 nT. The cause of the second storm's main phase with an SYM-H intensity of −354 nT was a deepening of the sheathBsto ∼43 nT. A magnetosonic wave (Mms∼ 0.6) compressed the sheath to a high magnetic field strength of ∼71 nT. IntensifiedBsof ∼48 nT were the cause of the third and most intense storm main phase, with an SYM-H intensity of −518 nT. Three magnetic cloud events withBsfields of ∼25–40 nT occurred in the storm recovery phase, lengthening the recovery to ∼2.8 days. At geosynchronous orbit, ∼76 keV to ∼1.5 MeV electrons exhibited ∼1–3 orders of magnitude flux decreases following the shock/sheath impingement onto the magnetosphere. The cosmic-ray decreases at Dome C, Antarctica (effective vertical cutoff rigidity <0.01 GV) and Oulu, Finland (rigidity ∼0.8 GV) were ∼17% and ∼11%, respectively, relative to quiet-time values. Strong ionospheric current flows resulted in extreme geomagnetically induced currents of ∼30–40 A in the subauroral region. The storm period is characterized by strong polar-region field-aligned currents, with ∼10 times intensification during the main phase and equatorward expansion down to ∼50° geomagnetic (altitude-adjusted) latitude. 
    more » « less
  3. Abstract Expanding biofuel production is expected to accelerate the conversion of unmanaged marginal lands to meet biomass feedstock needs. Greenhouse gas production during conversion jeopardizes the ensuing climate benefits, but most research to date has focused only on conversion to annual crops and only following tillage. Here we report the global warming impact of converting USDA Conservation Reserve Program (CRP) grasslands to three types of bioenergy crops using no‐till (NT) vs. conventional tillage (CT). We established replicated NT and CT plots in three CRP fields planted to continuous corn, switchgrass, or restored prairie. For the 2 yr following an initial soybean year in all fields, we found that, on average, NT conversion reduced nitrous oxide (N2O) emissions by 50% and CO2emissions by 20% compared with CT conversion. Differences were higher in Year 1 than in Year 2 in the continuous corn field, and in the two perennial systems the differences disappeared after Year 1. In all fields net CO2emissions (as measured by eddy covariance) were positive for the first 2 yr following CT establishment, but following NT establishment net CO2emissions were close to zero or negative, indicating net C sequestration. Overall, NT improved the global warming impact of biofuel crop establishment following CRP conversion by over 20‐fold compared with CT (−6.01 Mg CO2e ha−1 yr−1for NT vs. −0.25 Mg CO2e ha−1 yr−1for CT, on average). We also found that Intergovernmental Panel on Climate Change estimates of N2O emissions (as measured by static chambers) greatly underestimated actual emissions for converted fields regardless of tillage. Policies should encourage adoption of NT for converting marginal grasslands to perennial bioenergy crops to reduce C debt and maximize climate benefits. 
    more » « less
  4. Abstract Ghost forests, consisting of dead trees adjacent to marshes, are a striking feature of low-lying coastal and estuarine landscapes, and they represent the migration of coastal ecosystems with relative sea-level rise (RSLR). Although ghost forests have been observed along many coastal margins, rates of ecosystem change and their dependence on RSLR remain poorly constrained. Here, we reconstructed forest retreat rates using sediment coring and historical imagery at five sites along the Mid-Atlantic coast of the United States, a hotspot for accelerated RSLR. We found that the elevation of the marsh-forest boundary generally increased with RSLR over the past 2000 yr, and that retreat accelerated concurrently with the late 19th century acceleration in global sea level. Lateral retreat rates increased through time for most sampling intervals over the past 150 yr, and modern lateral retreat rates are 2 to 14 times faster than pre-industrial rates at all sites. Substantial deviations between RSLR and forest response are consistent with previous observations that episodic disturbance facilitates the mortality of adult trees. Nevertheless, our work suggests that RSLR is the primary determinant of coastal forest extent, and that ghost forests represent a direct and prominent visual indicator of climate change. 
    more » « less
  5. Abstract We employed the modern analog technique to quantitatively reconstruct temperature and precipitation over the past 2500 yr based on fossil pollen records from six high-elevation lakes in northern Colorado. Reconstructed annual temperatures for the study area did not deviate significantly from modern over the past 2500 yr despite hemispheric expressions of Medieval Climate Anomaly warmth and Little Ice Age cooling. Annual precipitation, however, shifted from lower than modern rates from 2500 to 1000 cal yr BP to higher than modern rates after 1000 cal yr BP, a greater than 100 mm increase in precipitation. Winter precipitation accounts for the majority of the change in annual precipitation, while summer precipitation rates did not change significantly over the past 2500 yr. The large change in winter precipitation rates from the first to second millennium of the Common Era is inferred from a shift in fossil pollen assemblages dominated by subalpine conifers, which have southern sites as modern analogs, to assemblages representing open subalpine vegetation with abundant Artemisia spp. (sagebrush), which have more northern modern analogs. The change helps to explain regional increases in lake levels and shifts in some isotopic and tree-ring data sets, highlighting the risk of large reductions in snowpack and water supplies in the Intermountain West. 
    more » « less