Satellites have provided high-resolution ( < 100 m) water color (i.e., remote sensing reflectance) and thermal emission imagery of aquatic environments since the early 1980s; however, global operational water quality products based on these data are not readily available (e.g., temperature, chlorophyll- a , turbidity, and suspended particle matter). Currently, because of the postprocessing required, only users with expressive experience can exploit these data, limiting their utility. Here, we provide paths (recipes) for the nonspecialist to access and derive water quality products, along with examples of applications, from sensors on board Landsat-5, Landsat-7, Landsat-8, Landsat-9, Sentinel-2A, and Sentinel-2B. We emphasize that the only assured metric for success in product derivation and the assigning of uncertainties to them is via validation with in situ data. We hope that this contribution will motivate nonspecialists to use publicly available high-resolution satellite data to study new processes and monitor a variety of novel environments that have received little attention to date.
more »
« less
A comparative study on intra-annual classification of invasive saltcedar with Landsat 8 and Landsat 9
- Award ID(s):
- 1951657
- PAR ID:
- 10494768
- Publisher / Repository:
- Taylor & Francis Group
- Date Published:
- Journal Name:
- International Journal of Remote Sensing
- Volume:
- 44
- Issue:
- 6
- ISSN:
- 0143-1161
- Page Range / eLocation ID:
- 2093 to 2114
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Surface meltwater generated on ice shelves fringing the Antarctic Ice Sheet can drive ice-shelf collapse, leading to ice sheet mass loss and contributing to global sea level rise. A quantitative assessment of supraglacial lake evolution is required to understand the influence of Antarctic surface meltwater on ice-sheet and ice-shelf stability. Cloud computing platforms have made the required remote sensing analysis computationally trivial, yet a careful evaluation of image processing techniques for pan-Antarctic lake mapping has yet to be performed. This work paves the way for automating lake identification at a continental scale throughout the satellite observational record via a thorough methodological analysis. We deploy a suite of different trained supervised classifiers to map and quantify supraglacial lake areas from multispectral Landsat-8 scenes, using training data generated via manual interpretation of the results from k-means clustering. Best results are obtained using training datasets that comprise spectrally diverse unsupervised clusters from multiple regions and that include rock and cloud shadow classes. We successfully apply our trained supervised classifiers across two ice shelves with different supraglacial lake characteristics above a threshold sun elevation of 20°, achieving classification accuracies of over 90% when compared to manually generated validation datasets. The application of our trained classifiers produces a seasonal pattern of lake evolution. Cloud shadowed areas hinder large-scale application of our classifiers, as in previous work. Our results show that caution is required before deploying ‘off the shelf’ algorithms for lake mapping in Antarctica, and suggest that careful scrutiny of training data and desired output classes is essential for accurate results. Our supervised classification technique provides an alternative and independent method of lake identification to inform the development of a continent-wide supraglacial lake mapping product.more » « less
-
Abstract Understanding and attributing changes to water quality is essential to the study and management of coastal ecosystems and the ecological functions they sustain (e.g., primary productivity, predation, and submerged aquatic vegetation growth). However, describing patterns of water clarity—a key aspect of water quality—over meaningful scales in space and time is challenged by high spatial and temporal variability due to natural and anthropogenic processes. Regionally tuned satellite algorithms can provide a more complete understanding of coastal water clarity changes and drivers. In this study, we used open‐access satellite data and low‐cost in situ methods to improve estimates of water clarity in an optically complex coastal water body. Specifically, we created a remote sensing water clarity product by compiling Landsat‐8 and Sentinel‐2 reflectance data with long‐term Secchi depth measurements at 12 sites over 8 years in a shallow turbid coastal lagoon system in Virginia, USA. Our satellite‐based model explained ∼33% of the variation in in situ water clarity. Our approach increases the spatiotemporal coverage of in situ water clarity data and improves estimates from bio‐optical algorithms that overpredicted water clarity. This could lead to a better understanding of water clarity changes and drivers to better predict how water quality will change in the future.more » « less
-
Satellites provide a temporally discontinuous record of hydrological conditions along Earth’s rivers (e.g., river width, height, water quality). The degree to which archived satellite data effectively capture the overall population of river flow frequency is unknown. Here, we use the entire archives of Landsat 5, 7, and 8 to determine when a cloud-free image is available over the United States Geological Survey (USGS) river gauges located on Landsat-observable rivers. We compare the flow frequency distribution derived from the daily gauge record to the flow frequency distribution derived from ideally sampling gauged discharge based on the timing of cloud-free Landsat overpasses. Examining the patterns of flow frequency across multiple gauges, we find that there is not a statistically significant difference between the flow frequency distribution associated with observations contained within the Landsat archive and the flow frequency distribution derived from the daily gauge data (α = 0.05), except for hydrological extremes like maximum and minimum flow. At individual gauges, we find that Landsat observations span a wide range of hydrological conditions (97% of total flow variability observed in 90% of the study gauges) but the degree to which the Landsat sample can represent flow frequency distribution varies from location to location and depends on sample size. The results of this study indicate that the Landsat archive is, on average, representative of the temporal frequencies of hydrological conditions present along Earth’s large rivers with broad utility for hydrological, ecologic and biogeochemical evaluations of river systems.more » « less
An official website of the United States government

