Convection occurs ubiquitously on and in rotating geophysical and astrophysical bodies. Prior spherical shell studies have shown that the convection dynamics in polar regions can differ significantly from the lower latitude, equatorial dynamics. Yet most spherical shell convective scaling laws use globally-averaged quantities that erase latitudinal differences in the physics. Here we quantify those latitudinal differences by analysing spherical shell simulations in terms of their regionalized convective heat-transfer properties. This is done by measuring local Nusselt numbers in two specific, latitudinally separate, portions of the shell, the polar and the equatorial regions, $$Nu_p$$ and $$Nu_e$$ , respectively. In rotating spherical shells, convection first sets in outside the tangent cylinder such that equatorial heat transfer dominates at small and moderate supercriticalities. We show that the buoyancy forcing, parameterized by the Rayleigh number $Ra$ , must exceed the critical equatorial forcing by a factor of $${\approx }20$$ to trigger polar convection within the tangent cylinder. Once triggered, $$Nu_p$$ increases with $Ra$ much faster than does $$Nu_e$$ . The equatorial and polar heat fluxes then tend to become comparable at sufficiently high $Ra$ . Comparisons between the polar convection data and Cartesian numerical simulations reveal quantitative agreement between the two geometries in terms of heat transfer and averaged bulk temperature gradient. This agreement indicates that rotating spherical shell convection dynamics is accessible both through spherical simulations and via reduced investigatory pathways, be they theoretical, numerical or experimental.
more »
« less
Convection in Thin Shells of Icy Satellites: Effects of Latitudinal Surface Temperature Variations
We use three‐dimensional numerical experiments of thin shell convection to explore what effects an expected latitudinal variation in solar insolation may have on a convection. We find that a global flow pattern of upwelling equatorial regions and downwelling polar regions, linked to higher and lower surface temperatures (Ts), respectively, is preferred. Due to the gradient inTs, boundary layer thicknesses vary from equatorial lows to polar highs, and polar oriented flow fields are established. AHadley cell‐type configuration with two hemispheric‐scale convective cells emerges with heat flow enhanced along the equator and suppressed poleward. The poleward transport pattern appears robust under a range of basal and mixed heating, isoviscous and temperature‐dependent viscosity, vigor of convection, and different degrees ofTsvariations. Our findings suggest that a latitudinal variation inTsis an important effect for convection within the thin ice shells of the outer satellites, becoming increasingly important as solar luminosity increases. VariableTsmodels predict lower heat flow and a more compressional regime near downwellings at higher latitudes, and higher heat flow and a more extensional regime near the equator. Within the ice shell, Hadley style flow could lead to large‐scale anisotropic ice properties that might be detectable with future seismic or electro‐magnetic observations.
more »
« less
- Award ID(s):
- 1853856
- PAR ID:
- 10495086
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Planets
- Volume:
- 124
- Issue:
- 8
- ISSN:
- 2169-9097
- Page Range / eLocation ID:
- 2029 to 2053
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The response of zonal-mean precipitation minus evaporation ( P − E ) to global warming is investigated using a moist energy balance model (MEBM) with a simple Hadley cell parameterization. The MEBM accurately emulates zonal-mean P − E change simulated by a suite of global climate models (GCMs) under greenhouse gas forcing. The MEBM also accounts for most of the intermodel differences in GCM P − E change and better emulates GCM P − E change when compared to the “wet-gets-wetter, dry-gets-drier” thermodynamic mechanism. The intermodel spread in P − E change is attributed to intermodel differences in radiative feedbacks, which account for 60%–70% of the intermodel variance, with smaller contributions from radiative forcing and ocean heat uptake. Isolating the intermodel spread of feedbacks to specific regions shows that tropical feedbacks are the primary source of intermodel spread in zonal-mean P − E change. The ability of the MEBM to emulate GCM P − E change is further investigated using idealized feedback patterns. A less negative and narrowly peaked feedback pattern near the equator results in more atmospheric heating, which strengthens the Hadley cell circulation in the deep tropics through an enhanced poleward heat flux. This pattern also increases gross moist stability, which weakens the subtropical Hadley cell circulation. These two processes in unison increase P − E in the deep tropics, decrease P − E in the subtropics, and narrow the intertropical convergence zone. Additionally, a feedback pattern that produces polar-amplified warming partially reduces the poleward moisture flux by weakening the meridional temperature gradient. It is shown that changes to the Hadley cell circulation and the poleward moisture flux are crucial for understanding the pattern of GCM P − E change under warming. Significance Statement Changes to the hydrological cycle over the twenty-first century are predicted to impact ecosystems and socioeconomic activities throughout the world. While it is broadly expected that dry regions will get drier and wet regions will get wetter, the magnitude and spatial structure of these changes remains uncertain. In this study, we use an idealized climate model, which assumes how energy is transported in the atmosphere, to understand the processes setting the pattern of precipitation and evaporation under global warming. We first use the idealized climate model to explain why comprehensive climate models predict different changes to precipitation and evaporation across a range of latitudes. We show this arises primarily from climate feedbacks, which act to amplify or dampen the amount of warming. Ocean heat uptake and radiative forcing play secondary roles but can account for a significant amount of the uncertainty in regions where ocean circulation influences the rate of warming. We further show that uncertainty in tropical feedbacks (mainly from clouds) affects changes to the hydrological cycle across a range of latitudes. We then show how the pattern of climate feedbacks affects how the patterns of precipitation and evaporation respond to climate change through a set of idealized experiments. These results show how the pattern of climate feedbacks impacts tropical hydrological changes by affecting the strength of the Hadley circulation and polar hydrological changes by affecting the transport of moisture to the high latitudes.more » « less
-
Abstract Oblique propagation of gravity waves (GWs) refers to the latitudinal propagation (or vertical propagation away from their source) from the low‐latitude troposphere to the polar mesosphere. This propagation is not included in current gravity wave parameterization schemes, but may be an important component of the global dynamical structure. Previous studies have revealed a high correlation between observations of GW pseudomomentum flux (GWMF) from monsoon convection and Polar Mesospheric Clouds (PMCs) in the northern hemisphere. In this work, we report on data and model analysis of the effects of stratospheric sudden warmings (SSWs) in the northern hemisphere, on the oblique propagation of GWs from the southern hemisphere tropics, which in turn influence PMCs in the southern summer mesosphere. In response to SSWs, the propagation of GWs at the midlatitude winter hemisphere is enhanced. This enhancement appears to be slanted toward the equator with increasing altitude and follows the stratospheric eastward jet. The oblique propagation of GWs from the southern monsoon regions tends to start at higher altitudes with a sharper poleward slanted structure toward the summer mesosphere. The correlation between PMCs in the summer southern hemisphere and the zonal GWMF from 50°N to 50°S exhibits a pattern of high‐correlation coefficients that connects the winter stratosphere with the summer mesosphere, indicating the influence of Interhemispheric Coupling mechanism. Temperature and wind anomalies suggest that the dynamics in the winter hemisphere can influence the equatorial region, which in turn, can influence the oblique propagation of monsoon GWs.more » « less
-
Abstract Variations in the width and strength of the Hadley cells are associated with many radiative, thermodynamic, and dynamical forcings. The physical mechanisms driving these responses remain unclear, in part because of the interactive nature of eddy‐mean flow adjustment. Here, a modeling framework is developed which separates the mean flow and time‐mean eddy flow in a gray radiation general circulation model with simple representations of ocean heat transport and ozone. In the absence of eddies, with moist convection and weak numerical damping, the Hadley cell is confined to the upper troposphere and has a vanishingly small poleward momentum flux. Eddies allow the cell to extend down to the surface, double its heat transport, and flux momentum poleward, the latter two being basic consequences of a deepening of the circulation. Because of convection and damping—which mimics, in part, the effect of eddy stresses—previous work may have underestimated the impact of eddies on earth's circulation. Quasigeostrophic eddy fluxes are sufficient to produce Hadley and Ferrel cells, but with a substantially greater Hadley cell strength than when all eddy impacts are considered, including eddy fluxes of moisture, mass, and momentum and eddy impacts on surface fluxes and clouds.more » « less
-
Abstract The magnetospheric substorm is a key mode of flux and energy transport throughout the magnetosphere associated with distinct and repeatable magnetotail dynamical processes and plasma injections. The substorm growth phase is characterized by current sheet thinning and magnetic field reconfiguration around the equatorial plane. The global characteristics of current sheet thinning are important for understanding of magnetotail state right before the onset of magnetic reconnection and of the key substorm expansion phase. In this paper, we investigate this thinning at different radial distances using plasma sheet (PS) energetic (>50 keV) electrons that reach from the equator to low altitudes during their fast (∼1 s) travel along magnetic field lines. We perform a multi‐case study and a statistical analysis of 34 events with near‐equatorial observations of the current sheet thinning by equatorial missions and concurrent, latitudinal crossings of the ionospheric projection of the magnetotail by the low‐altitude Electron Losses and Fields Investigation (ELFIN) CubeSats at approximately the same local time sector. Energetic electron fluxes thus collected by ELFIN provide near‐instantaneous (<5 min duration) radial snapshots of magnetotail fluxes. Main findings of this study confirm the previously proposed concepts with low‐altitude energetic electron measurements: (a) Energy distributions of low‐altitude fluxes are quantitatively close to the near‐equatorial distributions, which justifies the investigation of the magnetotail current sheet reconfiguration using low‐altitude measurements. (b) The magnetic field reconfiguration during the current sheet thinning (which lasts ≥ an hour) results in a rapid shrinking of the low‐altitude projection of the entire PS (from near‐Earth, ∼10RE, to the lunar orbit ∼60RE) to 1–2° of magnetic latitude in the ionosphere. (c) The current sheet dipolarization, common during the substorm onset, is associated with a very quick (∼10 min) change of the tail magnetic field configuration to its dipolar state, as implied by a poleward expansion of the PSPS at low altitudes.more » « less
An official website of the United States government

