Determination of abdominal aortic aneurysm (AAA) rupture risk involves the accurate prediction of mechanical stresses acting on the arterial tissue, as well as the wall strength which has a correlation with oxygen supply within the aneurysmal wall. Our laboratory has previously reported the significance of an intraluminal thrombus (ILT) presence and morphology on localized oxygen deprivation by assuming a uniform consistency of ILT. The aim of this work is to investigate the effects of ILT structural composition on oxygen flow by adopting a multilayered porous framework and comparing a two-layer ILT model with one-layer models. Three-dimensional idealized and patient-specific AAA geometries are generated. Numerical simulations of coupled fluid flow and oxygen transport between blood, arterial wall, and ILT are performed, and spatial variations of oxygen concentrations within the AAA are obtained. A parametric study is conducted, and ILT permeability and oxygen diffusivity parameters are individually varied within a physiological range. A gradient of permeability is also defined to represent the heterogenous structure of ILT. Results for oxygen measures as well as filtration velocities are obtained, and it is found that the presence of any ILT reduces and redistributes the concentrations in the aortic wall markedly. Moreover, it is found that the integration of a porous ILT significantly affects the oxygen transport in AAA and the concentrations are linked to ILT’s permeability values. Regardless of the ILT stratification, maximum variation in wall oxygen concentrations is higher in models with lower permeability, while the concentrations are not sensitive to the value of the diffusion coefficient. Based on the observations, we infer that average one-layer parameters for ILT material characteristics can be used to reasonably estimate the wall oxygen concentrations in aneurysm models.
more »
« less
Modeling the Impact of Abdominal Pressure on Hypoxia in Laboratory Swine
Abstract This paper presents an experimentally parameterized model of the dynamics of oxygen transport in a laboratory animal that simultaneously experiences: (i) a reduction in inspired oxygen plus (ii) an increase in intra-abdominal pressure. The goal is to model the potential impact of elevated intra-abdominal pressure on oxygen transport dynamics. The model contains three compartments, namely, the animal’s lungs, lower body vasculature, and upper body vasculature. The model assumes that intra-abdominal pressure affects the split of cardiac output among the two vasculature compartments and that aerobic metabolism in each compartment diminishes with severe hypoxia. Fitting this model to a laboratory experiment on an adult male Yorkshire swine using a regularized nonlinear least-squares approach furnishes both physiologically plausible parameter values plus a reasonable quality of fit.
more »
« less
- PAR ID:
- 10495155
- Publisher / Repository:
- ASME L-DSC
- Date Published:
- Journal Name:
- ASME Letters in Dynamic Systems and Control
- Volume:
- 3
- Issue:
- 2
- ISSN:
- 2689-6117
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract ObjectiveTo incorporate chronic vascular adaptations into a mathematical model of the rat hindlimb to simulate flow restoration following total occlusion of the femoral artery. MethodsA vascular wall mechanics model is used to simulate acute and chronic vascular adaptations in the collateral arteries and collateral‐dependent arterioles of the rat hindlimb. On an acute timeframe, the vascular tone of collateral arteries and distal arterioles is determined by responses to pressure, shear stress, and metabolic demand. On a chronic timeframe, sustained dilation of arteries and arterioles induces outward vessel remodeling represented by increased passive vessel diameter (arteriogenesis), and low venous oxygen saturation levels induce the growth of new capillaries represented by increased capillary number (angiogenesis). ResultsThe model predicts that flow compensation to an occlusion is enhanced primarily by arteriogenesis of the collateral arteries on a chronic time frame. Blood flow autoregulation is predicted to be disrupted and to occur for higher pressure values following femoral arterial occlusion. ConclusionsStructural adaptation of the vasculature allows for increased blood flow to the collateral‐dependent region after occlusion. Although flow is still below pre‐occlusion levels, model predictions indicate that interventions which enhance collateral arteriogenesis would have the greatest potential for restoring flow.more » « less
-
Abstract Storm waves transport and sort coarse gravel along coasts. This fundamental process is important under changing sea‐levels and increased storm frequency and intensity. However, limited information on intra‐storm clast motion restricts theory development for coastal gravel sorting and coastal management of longshore transport. Here, we use smart boulders equipped with loggers recording underwater, real‐time, intra‐storm clast motion, and measured longshore displacement of varied‐mass marked boulders during storms. We utilize the unique setting of the Dead Sea shores where rapidly falling water levels allow isolating boulder transport during individual storms. Guided by these observations, we develop a new model quantifying the critical wave height for a certain clast mass mobilization. Then, we obtain an expression for the longshore clast displacement under the fluid‐induced pressure impulse of a given wave. Finally, we formulate the sorting enforced by wave‐height distributions during a storm, demonstrating how sorting is a direct manifestation of regional hydroclimatology.more » « less
-
Abstract From microscaled capillaries to millimeter‐sized vessels, human vasculature spans multiple scales and cell types. The convergence of bioengineering, materials science, and stem cell biology has enabled tissue engineers to recreate the structure and function of different hierarchical levels of the vascular tree. Engineering large‐scale vessels aims to replace damaged arteries, arterioles, and venules and their routine application in the clinic may become a reality in the near future. Strategies to engineer meso‐ and microvasculature are extensively explored to generate models for studying vascular biology, drug transport, and disease progression as well as for vascularizing engineered tissues for regenerative medicine. However, bioengineering tissues for transplantation has failed to result in clinical translation due to the lack of proper integrated vasculature for effective oxygen and nutrient delivery. The development of strategies to generate multiscale vascular networks and their direct anastomosis to host vasculature would greatly benefit this formidable goal. In this review, design considerations and technologies for engineering millimeter‐, meso‐, and microscale vessels are discussed. Examples of recent state‐of‐the‐art strategies to engineer multiscale vasculature are also provided. Finally, key challenges limiting the translation of vascularized tissues are identified and perspectives on future directions for exploration are presented.more » « less
-
Abstract Nanostructuring to reduce thermal conductivity is among the most promising strategies for designing next‐generation, high‐performance thermoelectric materials. In practice, electrical grain boundary resistance can overwhelm the thermal conductivity reduction induced by nanostructuring, which results in worse overall performance. Since a large body of work has characterized the transport of both polycrystalline ceramics and single crystals of SrTiO3, it is an ideal material system for conducting a case study of electrical grain boundary resistance. An effective mass model is used to characterize the transport signatures of electrical grain boundary resistance and evaluate thermodynamic design principles for controlling that resistance. Treating the grain boundary as a secondary phase to the bulk crystallites explains the transport phenomena. Considering that the interface can be engineered by controlling oxygen partial pressure, temperature, and the addition of extrinsic elements into the grain boundary phase, the outlook for SrTiO3as a nanostructured thermoelectric is promising, and thezTcould be greater than 0.5 at room temperature.more » « less
An official website of the United States government

