skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data Isotopes for Data Provenance in DNNs
Today, creators of data-hungry deep neural networks (DNNs) scour the Internet for training fodder, leaving users with little control over or knowledge of when their data, and in particular their images, are used to train models. To empower users to counteract unwanted use of their images, we design, implement and evaluate a practical system that enables users to detect if their data was used to train a DNN model for image classification. We show how users can create special images we call isotopes, which introduce ``spurious features'' into DNNs during training. With only query access to a model and no knowledge of the model-training process, nor control of the data labels, a user can apply statistical hypothesis testing to detect if the model learned these spurious features by training on the user's images. Isotopes can be viewed as an application of a particular type of data poisoning. In contrast to backdoors and other poisoning attacks, our purpose is not to cause misclassification but rather to create tell-tale changes in confidence scores output by the model that reveal the presence of isotopes in the training data. Isotopes thus turn DNNs' vulnerability to memorization and spurious correlations into a tool for data provenance. Our results confirm efficacy in multiple image classification settings, detecting and distinguishing between hundreds of isotopes with high accuracy. We further show that our system works on public ML-as-a-service platforms and larger models such as ImageNet, can use physical objects in images instead of digital marks, and remains robust against several adaptive countermeasures.  more » « less
Award ID(s):
2241303 1949650 1916717
PAR ID:
10495506
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings on Privacy Enhancing Technologies
Date Published:
Journal Name:
Proceedings on Privacy Enhancing Technologies
Volume:
2024
Issue:
1
ISSN:
2299-0984
Page Range / eLocation ID:
413 to 429
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Federated learning enables thousands of participants to construct a deep learning model without sharing their private training data with each other. For example, multiple smartphones can jointly train a next-word predictor for keyboards without revealing what individual users type. We demonstrate that any participant in federated learning can introduce hidden backdoor functionality into the joint global model, e.g., to ensure that an image classifier assigns an attacker-chosen label to images with certain features, or that a word predictor completes certain sentences with an attacker-chosen word. We design and evaluate a new model-poisoning methodology based on model replacement. An attacker selected in a single round of federated learning can cause the global model to immediately reach 100% accuracy on the backdoor task. We evaluate the attack under different assumptions for the standard federated-learning tasks and show that it greatly outperforms data poisoning. Our generic constrain-and-scale technique also evades anomaly detection-based defenses by incorporating the evasion into the attacker's loss function during training. 
    more » « less
  2. The rise of foundation models fine-tuned on human feedback from potentially untrusted users has increased the risk of adversarial data poisoning, necessitating the study of robustness of learning algorithms against such attacks. Existing research on provable certified robustness against data poisoning attacks primarily focuses on certifying robustness for static adversaries who modify a fraction of the dataset used to train the model before the training algorithm is applied. In practice, particularly when learning from human feedback in an online sense, adversaries can observe and react to the learning process and inject poisoned samples that optimize adversarial objectives better than when they are restricted to poisoning a static dataset once, before the learning algorithm is applied. Indeed, it has been shown in prior work that online dynamic adversaries can be significantly more powerful than static ones. We present a novel framework for computing certified bounds on the impact of dynamic poisoning, and use these certificates to design robust learning algorithms. We give an illustration of the framework for the mean estimation problem and binary classification problems and outline directions for extending this in further work. 
    more » « less
  3. Specialized machine learning (ML) models tailored to users’ needs and requests are increasingly being deployed on smart devices with cameras, to provide personalized intelligent services taking advantage of camera data. However, two primary challenges hinder the training of such models: the lack of publicly available labeled data suitable for specialized tasks and the inaccessibility of labeled private data due to concerns about user privacy. To address these challenges, we propose a novel system SpinML, where the server generates customized Synthetic image data to Privately traIN a specialized ML model tailored to the user request, with the usage of only a few sanitized reference images from the user. SpinML offers users fine-grained, object-level control over the reference images, which allows user to trade between the privacy and utility of the generated synthetic data according to their privacy preferences. Through experiments on three specialized model training tasks, we demonstrate that our proposed system can enhance the perfor- mance of specialized models without compromising users’ privacy preferences. 
    more » « less
  4. The pervasiveness of neural networks (NNs) in critical computer vision and image processing applications makes them very attractive for adversarial manipulation. A large body of existing research thoroughly investigates two broad categories of attacks targeting the integrity of NN models. The first category of attacks, commonly called Adversarial Examples, perturbs the model's inference by carefully adding noise into input examples. In the second category of attacks, adversaries try to manipulate the model during the training process by implanting Trojan backdoors. Researchers show that such attacks pose severe threats to the growing applications of NNs and propose several defenses against each attack type individually. However, such one-sided defense approaches leave potentially unknown risks in real-world scenarios when an adversary can unify different attacks to create new and more lethal ones bypassing existing defenses. In this work, we show how to jointly exploit adversarial perturbation and model poisoning vulnerabilities to practically launch a new stealthy attack, dubbed AdvTrojan. AdvTrojan is stealthy because it can be activated only when: 1) a carefully crafted adversarial perturbation is injected into the input examples during inference, and 2) a Trojan backdoor is implanted during the training process of the model. We leverage adversarial noise in the input space to move Trojan-infected examples across the model decision boundary, making it difficult to detect. The stealthiness behavior of AdvTrojan fools the users into accidentally trusting the infected model as a robust classifier against adversarial examples. AdvTrojan can be implemented by only poisoning the training data similar to conventional Trojan backdoor attacks. Our thorough analysis and extensive experiments on several benchmark datasets show that AdvTrojan can bypass existing defenses with a success rate close to 100% in most of our experimental scenarios and can be extended to attack federated learning as well as high-resolution images. 
    more » « less
  5. Zelinski, Michael E.; Taha, Tarek M.; Howe, Jonathan (Ed.)
    Image classification forms an important class of problems in machine learning and is widely used in many realworld applications, such as medicine, ecology, astronomy, and defense. Convolutional neural networks (CNNs) are machine learning techniques designed for inputs with grid structures, e.g., images, whose features are spatially correlated. As such, CNNs have been demonstrated to be highly effective approaches for many image classification problems and have consistently outperformed other approaches in many image classification and object detection competitions. A particular challenge involved in using machine learning for classifying images is measurement data loss in the form of missing pixels, which occurs in settings where scene occlusions are present or where the photodetectors in the imaging system are partially damaged. In such cases, the performance of CNN models tends to deteriorate or becomes unreliable even when the perturbations to the input image are small. In this work, we investigate techniques for improving the performance of CNN models for image classification with missing data. In particular, we explore training on a variety of data alterations that mimic data loss for producing more robust classifiers. By optimizing the categorical cross-entropy loss function, we demonstrate through numerical experiments on the MNIST dataset that training with these synthetic alterations can enhance the classification accuracy of our CNN models. 
    more » « less