Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Today, creators of data-hungry deep neural networks (DNNs) scour the Internet for training fodder, leaving users with little control over or knowledge of when their data, and in particular their images, are used to train models. To empower users to counteract unwanted use of their images, we design, implement and evaluate a practical system that enables users to detect if their data was used to train a DNN model for image classification. We show how users can create special images we call isotopes, which introduce ``spurious features'' into DNNs during training. With only query access to a model and no knowledge of the model-training process, nor control of the data labels, a user can apply statistical hypothesis testing to detect if the model learned these spurious features by training on the user's images. Isotopes can be viewed as an application of a particular type of data poisoning. In contrast to backdoors and other poisoning attacks, our purpose is not to cause misclassification but rather to create tell-tale changes in confidence scores output by the model that reveal the presence of isotopes in the training data. Isotopes thus turn DNNs' vulnerability to memorization and spurious correlations into a tool for data provenance. Our results confirm efficacy in multiple image classification settings, detecting and distinguishing between hundreds of isotopes with high accuracy. We further show that our system works on public ML-as-a-service platforms and larger models such as ImageNet, can use physical objects in images instead of digital marks, and remains robust against several adaptive countermeasures.
Free, publicly-accessible full text available January 1, 2025 -
Recent text-to-image diffusion models such as MidJourney and Stable Diffusion threaten to displace many in the professional artist community. In particular, models can learn to mimic the artistic style of specific artists after “fine-tuning” on samples of their art. In this paper, we describe the design, implementation and evaluation of Glaze, a tool that enables artists to apply “style cloaks” to their art before sharing online. These cloaks apply barely perceptible perturbations to images, and when used as training data, mislead generative models that try to mimic a specific artist. In coordination with the professional artist community, we deploy user studies to more than 1000 artists, assessing their views of AI art, as well as the efficacy of our tool, its usability and tolerability of perturbations, and robustness across different scenarios and against adaptive countermeasures. Both surveyed artists and empirical CLIP-based scores show that even at low perturbation levels (p=0.05), Glaze is highly successful at disrupting mimicry under normal conditions (>92%) and against adaptive countermeasures (>85%).more » « less
-
Today, face editing is widely used to refine/alter photos in both professional and recreational settings. Yet it is also used to modify (and repost) existing online photos for cyberbullying. Our work considers an important open question: 'How can we support the collaborative use of face editing on social platforms while protecting against unacceptable edits and reposts by others?' This is challenging because, as our user study shows, users vary widely in their definition of what edits are (un)acceptable. Any global filter policy deployed by social platforms is unlikely to address the needs of all users, but hinders social interactions enabled by photo editing. Instead, we argue that face edit protection policies should be implemented by social platforms based on individual user preferences. When posting an original photo online, a user can choose to specify the types of face edits (dis)allowed on the photo. Social platforms use these per-photo edit policies to moderate future photo uploads, i.e., edited photos containing modifications that violate the original photo's policy are either blocked or shelved for user approval. Realizing this personalized protection, however, faces two immediate challenges: (1) how to accurately recognize specific modifications, if any, contained in a photo; and (2) how to associate an edited photo with its original photo (and thus the edit policy). We show that these challenges can be addressed by combining highly efficient hashing based image search and scalable semantic image comparison, and build a prototype protector (Alethia) covering nine edit types. Evaluations using IRB-approved user studies and data-driven experiments (on 839K face photos) show that Alethia accurately recognizes edited photos that violate user policies and induces a feeling of protection to study participants. This demonstrates the initial feasibility of personalized face edit protection. We also discuss current limitations and future directions to push the concept forward.