We address a system of equations modeling an incompressible fluid interacting with an elastic body. We prove the local existence when the initial velocity belongs to the space
We address a system of equations modeling a compressible fluid interacting with an elastic body in dimension three. We prove the local existence and uniqueness of a strong solution when the initial velocity belongs to the space
- PAR ID:
- 10495611
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Mathematical Fluid Mechanics
- Volume:
- 26
- Issue:
- 2
- ISSN:
- 1422-6928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
On the Local Existence of Solutions to the Fluid–Structure Interaction Problem with a Free Interface
Abstract and the initial structure velocity is in$$H^{1.5+\epsilon }$$ , where$$H^{1+\epsilon }$$ .$$\epsilon \in (0, 1/20)$$ -
Abstract We address the long-time behavior of the 2D Boussinesq system, which consists of the incompressible Navier–Stokes equations driven by a non-diffusive density. We construct globally persistent solutions on a smooth bounded domain, when the initial data belongs to
for$$(H^k\cap V)\times H^k$$ and$$k\in \mathbb {N}$$ for$$H^s\times H^s$$ . The proofs use parabolic maximal regularity and specific compatibility conditions at the initial time. Additionally, we also deduce various asymptotic properties of the velocity and density in the long-time limit and present a necessary and sufficient condition for the convergence to a steady state.$$0 -
Abstract We study the distribution over measurement outcomes of noisy random quantum circuits in the regime of low fidelity, which corresponds to the setting where the computation experiences at least one gate-level error with probability close to one. We model noise by adding a pair of weak, unital, single-qubit noise channels after each two-qubit gate, and we show that for typical random circuit instances, correlations between the noisy output distribution
and the corresponding noiseless output distribution$$p_{\text {noisy}}$$ shrink exponentially with the expected number of gate-level errors. Specifically, the linear cross-entropy benchmark$$p_{\text {ideal}}$$ F that measures this correlation behaves as , where$$F=\text {exp}(-2s\epsilon \pm O(s\epsilon ^2))$$ is the probability of error per circuit location and$$\epsilon $$ s is the number of two-qubit gates. Furthermore, if the noise is incoherent—for example, depolarizing or dephasing noise—the total variation distance between the noisy output distribution and the uniform distribution$$p_{\text {noisy}}$$ decays at precisely the same rate. Consequently, the noisy output distribution can be approximated as$$p_{\text {unif}}$$ . In other words, although at least one local error occurs with probability$$p_{\text {noisy}}\approx Fp_{\text {ideal}}+ (1-F)p_{\text {unif}}$$ , the errors are scrambled by the random quantum circuit and can be treated as global white noise, contributing completely uniform output. Importantly, we upper bound the average total variation error in this approximation by$$1-F$$ . Thus, the “white-noise approximation” is meaningful when$$O(F\epsilon \sqrt{s})$$ , a quadratically weaker condition than the$$\epsilon \sqrt{s} \ll 1$$ requirement to maintain high fidelity. The bound applies if the circuit size satisfies$$\epsilon s\ll 1$$ , which corresponds to only$$s \ge \Omega (n\log (n))$$ logarithmic depth circuits, and if, additionally, the inverse error rate satisfies , which is needed to ensure errors are scrambled faster than$$\epsilon ^{-1} \ge {\tilde{\Omega }}(n)$$ F decays. The white-noise approximation is useful for salvaging the signal from a noisy quantum computation; for example, it was an underlying assumption in complexity-theoretic arguments that noisy random quantum circuits cannot be efficiently sampled classically, even when the fidelity is low. Our method is based on a map from second-moment quantities in random quantum circuits to expectation values of certain stochastic processes for which we compute upper and lower bounds. -
Abstract In a Merlin–Arthur proof system, the proof verifier (Arthur) accepts valid proofs (from Merlin) with probability 1, and rejects invalid proofs with probability arbitrarily close to 1. The running time of such a system is defined to be the length of Merlin’s proof plus the running time of Arthur. We provide new Merlin–Arthur proof systems for some key problems in fine-grained complexity. In several cases our proof systems have optimal running time. Our main results include:
Certifying that a list of
n integers has no 3-SUM solution can be done in Merlin–Arthur time . Previously, Carmosino et al. [ITCS 2016] showed that the problem has a nondeterministic algorithm running in$$\tilde{O}(n)$$ time (that is, there is a proof system with proofs of length$$\tilde{O}(n^{1.5})$$ and a deterministic verifier running in$$\tilde{O}(n^{1.5})$$ time).$$\tilde{O}(n^{1.5})$$ Counting the number of
k -cliques with total edge weight equal to zero in ann -node graph can be done in Merlin–Arthur time (where$${\tilde{O}}(n^{\lceil k/2\rceil })$$ ). For odd$$k\ge 3$$ k , this bound can be further improved for sparse graphs: for example, counting the number of zero-weight triangles in anm -edge graph can be done in Merlin–Arthur time . Previous Merlin–Arthur protocols by Williams [CCC’16] and Björklund and Kaski [PODC’16] could only count$${\tilde{O}}(m)$$ k -cliques in unweighted graphs, and had worse running times for smallk .Computing the All-Pairs Shortest Distances matrix for an
n -node graph can be done in Merlin–Arthur time . Note this is optimal, as the matrix can have$$\tilde{O}(n^2)$$ nonzero entries in general. Previously, Carmosino et al. [ITCS 2016] showed that this problem has an$$\Omega (n^2)$$ nondeterministic time algorithm.$$\tilde{O}(n^{2.94})$$ Certifying that an
n -variablek -CNF is unsatisfiable can be done in Merlin–Arthur time . We also observe an algebrization barrier for the previous$$2^{n/2 - n/O(k)}$$ -time Merlin–Arthur protocol of R. Williams [CCC’16] for$$2^{n/2}\cdot \textrm{poly}(n)$$ SAT: in particular, his protocol algebrizes, and we observe there is no algebrizing protocol for$$\#$$ k -UNSAT running in time. Therefore we have to exploit non-algebrizing properties to obtain our new protocol.$$2^{n/2}/n^{\omega (1)}$$ Certifying a Quantified Boolean Formula is true can be done in Merlin–Arthur time
. Previously, the only nontrivial result known along these lines was an Arthur–Merlin–Arthur protocol (where Merlin’s proof depends on some of Arthur’s coins) running in$$2^{4n/5}\cdot \textrm{poly}(n)$$ time.$$2^{2n/3}\cdot \textrm{poly}(n)$$ n integers can be done in Merlin–Arthur time , improving on the previous best protocol by Nederlof [IPL 2017] which took$$2^{n/3}\cdot \textrm{poly}(n)$$ time.$$2^{0.49991n}\cdot \textrm{poly}(n)$$ -
Abstract Consider two half-spaces
and$$H_1^+$$ in$$H_2^+$$ whose bounding hyperplanes$${\mathbb {R}}^{d+1}$$ and$$H_1$$ are orthogonal and pass through the origin. The intersection$$H_2$$ is a spherical convex subset of the$${\mathbb {S}}_{2,+}^d:={\mathbb {S}}^d\cap H_1^+\cap H_2^+$$ d -dimensional unit sphere , which contains a great subsphere of dimension$${\mathbb {S}}^d$$ and is called a spherical wedge. Choose$$d-2$$ n independent random points uniformly at random on and consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of$${\mathbb {S}}_{2,+}^d$$ . A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on$$\log n$$ . The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a half-sphere.$${\mathbb {S}}_{2,+}^d$$