skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Networked Anti-coordination Games Meet Graphical Dynamical Systems: Equilibria and Convergence
Evolutionary anti-coordination games on networks capture real-world strategic situations such as traffic routing and market competition. Two key problems concerning evolutionary games are the existence of a pure Nash equilibrium (NE) and the convergence time. In this work, we study these two problems for anti-coordination games under sequential and synchronous update schemes. For each update scheme, we examine two decision modes based on whether an agent considers its own previous action (self essential) or not (self non-essential) in choosing its next action. Using a relationship between games and dynamical systems, we show that for both update schemes, finding an NE can be done efficiently under the self non-essential mode but is computationally intractable under the self essential mode. We then identify special cases for which an NE can be obtained efficiently. For convergence time, we show that the dynamics converges in a polynomial number of steps under the synchronous scheme; for the sequential scheme, the convergence time is polynomial only under the self non-essential mode. Through experiments, we empirically examine the convergence time and the equilibria for both synthetic and real-world networks.  more » « less
Award ID(s):
1918656 1916805
PAR ID:
10496172
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
AAAI
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
37
Issue:
10
ISSN:
2159-5399
Page Range / eLocation ID:
11663 to 11671
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tauman_Kalai, Yael (Ed.)
    We study the complexity of computing stationary Nash equilibrium (NE) in n-player infinite-horizon general-sum stochastic games. We focus on the problem of computing NE in such stochastic games when each player is restricted to choosing a stationary policy and rewards are discounted. First, we prove that computing such NE is in PPAD (in addition to clearly being PPAD-hard). Second, we consider turn-based specializations of such games where at each state there is at most a single player that can take actions and show that these (seemingly-simpler) games remain PPAD-hard. Third, we show that under further structural assumptions on the rewards computing NE in such turn-based games is possible in polynomial time. Towards achieving these results we establish structural facts about stochastic games of broader utility, including monotonicity of utilities under single-state single-action changes and reductions to settings where each player controls a single state. 
    more » « less
  2. Characterizing the performance of no-regret dynamics in multi-player games is a foundational problem at the interface of online learning and game theory. Recent results have revealed that when all players adopt specific learning algorithms, it is possible to improve exponentially over what is predicted by the overly pessimistic no-regret framework in the traditional adversarial regime, thereby leading to faster convergence to the set of coarse correlated equilibria (CCE) – a standard game-theoretic equilibrium concept. Yet, despite considerable recent progress, the fundamental complexity barriers for learning in normal- and extensive-form games are poorly understood. In this paper, we make a step towards closing this gap by first showing that – barring major complexity breakthroughs – any polynomial-time learning algorithms in extensive-form games need at least 2log1/2−o(1) |T | iterations for the average regret to reach below even an absolute constant, where |T | is the number of nodes in the game. This establishes a superpolynomial separation between no-regret learning in normal- and extensive-form games, as in the former class a logarithmic number of iterations suffices to achieve constant average regret. Furthermore, our results imply that algorithms such as multiplicative weights update, as well as its optimistic counterpart, require at least 2(log logm)1/2−o(1) iterations to attain an O(1)-CCE in m-action normal-form games under any parameterization. These are the first non-trivial – and dimension-dependent – lower bounds in that setting for the most well-studied algorithms in the literature. From a technical standpoint, we follow a beautiful connection recently made by Foster, Golowich, and Kakade (ICML ’23) between sparse CCE and Nash equilibria in the context of Markov games. Consequently, our lower bounds rule out polynomial-time algorithms well beyond the traditional online learning framework, capturing techniques commonly used for accelerating centralized equilibrium computation. 
    more » « less
  3. Many machine learning problems can be abstracted in solving game theory formulations and boil down to optimizing nested objectives, such as generative adversarial networks (GANs) and multi-agent reinforcement learning. Solving these games requires finding their stable fixed points or Nash equilibrium. However, existing algorithms for solving games suffer from empirical instability, hence demanding heavy ad-hoc tuning in practice. To tackle these challenges, we resort to the emerging scheme of Learning to Optimize (L2O), which discovers problem-specific efficient optimization algorithms through data-driven training. Our customized L2O framework for differentiable game theory problems, dubbed “Learning to Play Games" (L2PG), seeks a stable fixed point solution, by predicting the fast update direction from the past trajectory, with a novel gradient stability-aware, sign-based loss function. We further incorporate curriculum learning and self-learning to strengthen the empirical training stability and generalization of L2PG. On test problems including quadratic games and GANs, L2PG can substantially accelerate the convergence, and demonstrates a remarkably more stable trajectory. Codes are available at https://github.com/VITA-Group/L2PG. 
    more » « less
  4. Policy gradient methods enjoy strong practical performance in numerous tasks in reinforcement learning. Their theoretical understanding in multiagent settings, however, remains limited, especially beyond two-player competitive and potential Markov games. In this paper, we develop a new framework to characterize optimistic policy gradient methods in multi-player Markov games with a single controller. Specifically, under the further assumption that the game exhibits an equilibrium collapse, in that the marginals of coarse correlated equilibria (CCE) induce Nash equilibria (NE), we show convergence to stationary ϵ-NE in O(1/ϵ2) iterations, where O(⋅) suppresses polynomial factors in the natural parameters of the game. Such an equilibrium collapse is well-known to manifest itself in two-player zero-sum Markov games, but also occurs even in a class of multi-player Markov games with separable interactions, as established by recent work. As a result, we bypass known complexity barriers for computing stationary NE when either of our assumptions fails. Our approach relies on a natural generalization of the classical Minty property that we introduce, which we anticipate to have further applications beyond Markov games. 
    more » « less
  5. Motivated by approximation Bayesian computation using mean-field variational approximation and the computation of equilibrium in multi-species systems with cross-interaction, this paper investigates the composite geodesically convex optimization problem over multiple distributions. The objective functional under consideration is composed of a convex potential energy on a product of Wasserstein spaces and a sum of convex self-interaction and internal energies associated with each distribution. To efficiently solve this problem, we introduce the Wasserstein Proximal Coordinate Gradient (WPCG) algorithms with parallel, sequential, and random update schemes. Under a quadratic growth (QG) condition that is weaker than the usual strong convexity requirement on the objective functional, we show that WPCG converges exponentially fast to the unique global optimum. In the absence of the QG condition, WPCG is still demonstrated to converge to the global optimal solution, albeit at a slower polynomial rate. Numerical results for both motivating examples are consistent with our theoretical findings. 
    more » « less