This paper introduces a novel generative encoder (GE) framework for generative imaging and image processing tasks like image reconstruction, compression, denoising, inpainting, deblurring, and super-resolution. GE unifies the generative capacity of GANs and the stability of AEs in an optimization framework instead of stacking GANs and AEs into a single network or combining their loss functions as in existing literature. GE provides a novel approach to visualizing relationships between latent spaces and the data space. The GE framework is made up of a pre-training phase and a solving phase. In the former, a GAN with generator \begin{document}$ G $$\end{document} capturing the data distribution of a given image set, and an AE network with encoder \begin{document}$$ E $$\end{document} that compresses images following the estimated distribution by \begin{document}$$ G $$\end{document} are trained separately, resulting in two latent representations of the data, denoted as the generative and encoding latent space respectively. In the solving phase, given noisy image \begin{document}$$ x = \mathcal{P}(x^*) $$\end{document}, where \begin{document}$$ x^* $$\end{document} is the target unknown image, \begin{document}$$ \mathcal{P} $$\end{document} is an operator adding an addictive, or multiplicative, or convolutional noise, or equivalently given such an image \begin{document}$$ x $$\end{document} in the compressed domain, i.e., given \begin{document}$$ m = E(x) $$\end{document}, the two latent spaces are unified via solving the optimization problem \begin{document}$$ z^* = \underset{z}{\mathrm{argmin}} \|E(G(z))-m\|_2^2+\lambda\|z\|_2^2 $$\end{document} and the image \begin{document}$$ x^* $$\end{document} is recovered in a generative way via \begin{document}$$ \hat{x}: = G(z^*)\approx x^* $$\end{document}, where \begin{document}$$ \lambda>0 $$\end{document}$ is a hyperparameter. The unification of the two spaces allows improved performance against corresponding GAN and AE networks while visualizing interesting properties in each latent space.
more »
« less
Generative Multi-Physics Models for System Power and Thermal Analysis Using Conditional Generative Adversarial Networks
- PAR ID:
- 10496175
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE 32nd Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)
- ISBN:
- 979-8-3503-1798-5
- Page Range / eLocation ID:
- 1 to 3
- Format(s):
- Medium: X
- Location:
- Milpitas, CA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We introduce marginalization models (MaMs), a new family of generative models for high-dimensional discrete data. They offer scalable and flexible generative modeling with tractable likelihoods by explicitly modeling all induced marginal distributions. Marginalization models enable fast evaluation of arbitrary marginal probabilities with a single forward pass of the neural network, which overcomes a major limitation of methods with exact marginal inference, such as autoregressive models (ARMs). We propose scalable methods for learning the marginals, grounded in the concept of "marginalization self-consistency". Unlike previous methods, MaMs support scalable training of any-order generative models for high-dimensional problems under the setting of energy-based training, where the goal is to match the learned distribution to a given desired probability (specified by an unnormalized (log) probability function such as energy function or reward function). We demonstrate the effectiveness of the proposed model on a variety of discrete data distributions, including binary images, language, physical systems, and molecules, for maximum likelihood and energy-based training settings. MaMs achieve orders of magnitude speedup in evaluating the marginal probabilities on both settings. For energy-based training tasks, MaMs enable any-order generative modeling of high-dimensional problems beyond the capability of previous methods. Code is at https://github.com/PrincetonLIPS/MaM.more » « less
-
We introduce marginalization models (MAMs), a new family of generative models for high-dimensional discrete data. They offer scalable and flexible generative modeling by explicitly modeling all induced marginal distributions. Marginalization models enable fast approximation of arbitrary marginal probabilities with a single forward pass of the neural network, which overcomes a major limitation of arbitrary marginal inference models, such as any-order autoregressive models. MAMs also address the scalability bottleneck encountered in training any-order generative models for high-dimensional problems under the context of energy-based training, where the goal is to match the learned distribution to a given desired probability (specified by an unnormalized log-probability function such as energy or reward function). We propose scalable methods for learning the marginals, grounded in the concept of "marginalization self-consistency". We demonstrate the effectiveness of the proposed model on a variety of discrete data distributions, including images, text, physical systems, and molecules, for maximum likelihood and energy-based training settings. MAMs achieve orders of magnitude speedup in evaluating the marginal probabilities on both settings. For energy-based training tasks, MAMs enable any-order generative modeling of high-dimensional problems beyond the scale of previous methods.more » « less
An official website of the United States government
