skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scaling waterbody carbon dioxide and methane fluxes in the arctic using an integrated terrestrial-aquatic approach
Abstract In the Arctic waterbodies are abundant and rapid thaw of permafrost is destabilizing the carbon cycle and changing hydrology. It is particularly important to quantify and accurately scale aquatic carbon emissions in arctic ecosystems. Recently available high-resolution remote sensing datasets capture the physical characteristics of arctic landscapes at unprecedented spatial resolution. We demonstrate how machine learning models can capitalize on these spatial datasets to greatly improve accuracy when scaling waterbody CO2and CH4fluxes across the YK Delta of south-west AK. We found that waterbody size and contour were strong predictors for aquatic CO2emissions, attributing greater than two-thirds of the influence to the scaling model. Small ponds (<0.001 km2) were hotspots of emissions, contributing fluxes several times their relative area, but were less than 5% of the total carbon budget. Small to medium lakes (0.001–0.1 km2) contributed the majority of carbon emissions from waterbodies. Waterbody CH4emissions were predicted by a combination of wetland landcover and related drivers, as well as watershed hydrology, and waterbody surface reflectance related to chromophoric dissolved organic matter. When compared to our machine learning approach, traditional scaling methods that did not account for relevant landscape characteristics overestimated waterbody CO2and CH4emissions by 26%–79% and 8%–53% respectively. This study demonstrates the importance of an integrated terrestrial-aquatic approach to improving estimates and uncertainty when scaling C emissions in the arctic.  more » « less
Award ID(s):
1915307
PAR ID:
10496479
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
18
Issue:
6
ISSN:
1748-9326
Page Range / eLocation ID:
064019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sea level rise and more frequent and larger storms will increase saltwater flooding in coastal terrestrial ecosystems, altering soil‐atmosphere CO2and CH4exchange. Understanding these impacts is particularly relevant in high‐latitude coastal soils that hold large carbon stocks but where the interaction of salinity and moisture on greenhouse gas flux remains unexplored. Here, we quantified the effects of salinity and moisture on CO2and CH4fluxes from low‐Arctic coastal soils from three landscape positions (two Wetlands and Upland Tundra) distinguished by elevation, flooding frequency, soil characteristics, and vegetation. We used a full factorial laboratory incubation experiment of three soil moisture levels (40%, 70%, or 100% saturation) and four salinity levels (freshwater, 3, 6, or 12 ppt). Salinity and soil moisture were important controls on CO2and CH4emissions across all landscape positions. In saturated soil, CO2emissions increased with salinity in the lower elevation landscape positions but not in the Upland Tundra soil. Saturated soil was necessary for large CH4emissions. CH4emissions were greatest with low salinity, or after 11 weeks of incubation when SO42−was exhausted allowing for methanogenesis as the dominant mechanism of anaerobic respiration. In partially saturated soil, greater salinity suppressed CO2production in all soils. CH4fluxes were overall quite low, but increased between 3 and 6 ppt in the Tundra. In the future, a small increase in floodwater salinity may increase CO2production while suppressing CH4production; however, where water is impounded, CH4production could become large, particularly in the landscapes most likely to flood. 
    more » « less
  2. Goetz, Scott (Ed.)
    Abstract Significant uncertainties persist concerning how Arctic soil tundra carbon emission responds to environmental changes. In this study, 24 cores were sampled from drier (high centre polygons and rims) and wetter (low centre polygons and troughs) permafrost tundra ecosystems. We examined how soil CO2and CH4fluxes responded to laboratory-based manipulations of soil temperature (and associated thaw depth) and water table depth, representing current and projected conditions in the Arctic. Similar soil CO2respiration rates occurred in both the drier and the wetter sites, suggesting that a significant proportion of soil CO2emission occurs via anaerobic respiration under water-saturated conditions in these Arctic tundra ecosystems. In the absence of vegetation, soil CO2respiration rates decreased sharply within the first 7 weeks of the experiment, while CH4emissions remained stable for the entire 26 weeks of the experiment. These patterns suggest that soil CO2emission is more related to plant input than CH4production and emission. The stable and substantial CH4emission observed over the entire course of the experiment suggests that temperature limitations, rather than labile carbon limitations, play a predominant role in CH4production in deeper soil layers. This is likely due to the presence of a substantial source of labile carbon in these carbon-rich soils. The small soil temperature difference (a median difference of 1 °C) and a more substantial thaw depth difference (a median difference of 6 cm) between the high and low temperature treatments resulted in a non-significant difference between soil CO2and CH4emissions. Although hydrology continued to be the primary factor influencing CH4emissions, these emissions remained low in the drier ecosystem, even with a water table at the surface. This result suggests the potential absence of a methanogenic microbial community in high-centre polygon and rim ecosystems. Overall, our results suggest that the temperature increases reported for these Arctic regions are not responsible for increases in carbon losses. Instead, it is the changes in hydrology that exert significant control over soil CO2and CH4emissions. 
    more » « less
  3. Abstract Fluxes of carbon dioxide (CO2) and methane (CH4) from open water bodies are critical components of carbon‐climate feedbacks in high latitudes. Processes governing the spatial and temporal variability of these aquatic greenhouse gas (GHG) fluxes are still highly uncertain due to limited observational data sets and lack of modeling studies incorporating comprehensive thermal and biochemical processes. This research investigates how slight variations in climate propagate through the biogeochemical cycles of ponds and resulting impacts on GHG emissions. We examine the thermal and biogeochemical dynamics of two ponds in the Yukon–Kuskokwim Delta, Alaska, under varying climatic conditions to study the impacts on CO2, CH4, and oxygen (O2) concentrations and fluxes. We performed multiple numerical experiments, using the LAKE process‐based model and field measurements, to analyze how these ponds respond to variations in air temperature, shortwave radiation, and snow cover. Our study demonstrates that ice cover duration and water temperature are primary climatic drivers of GHG fluxes. Climate experiments led to reductions in ice cover duration and increased water temperatures, which subsequently enhanced CH4and CO2gas emissions from two study ponds. On average, cumulative CH4and CO2emissions were 5% and 10% higher, respectively, under increases in air temperature and shortwave radiation. Additionally, we uncovered a need to incorporate groundwater influxes of dissolved gases and nutrients in order to fully represent processes governing aquatic biochemical activity. Our work highlights the importance of understanding local‐scale processes in predicting future Arctic contributions to GHG emissions. 
    more » « less
  4. Abstract The Arctic–Boreal Zone is rapidly warming, impacting its large soil carbon stocks. Here we use a new compilation of terrestrial ecosystem CO2fluxes, geospatial datasets and random forest models to show that although the Arctic–Boreal Zone was overall an increasing terrestrial CO2sink from 2001 to 2020 (mean ± standard deviation in net ecosystem exchange, −548 ± 140 Tg C yr−1; trend, −14 Tg C yr−1;P < 0.001), more than 30% of the region was a net CO2source. Tundra regions may have already started to function on average as CO2sources, demonstrating a shift in carbon dynamics. When fire emissions are factored in, the increasing Arctic–Boreal Zone sink is no longer statistically significant (budget, −319 ± 140 Tg C yr−1; trend, −9 Tg C yr−1), and the permafrost region becomes CO2neutral (budget, −24 ± 123 Tg C yr−1; trend, −3 Tg C yr−1), underscoring the importance of fire in this region. 
    more » « less
  5. Abstract Understanding methane (CH4) emission from thermokarst lakes is crucial for predicting the impacts of abrupt thaw on the permafrost carbon-climate feedback. However, observational evidence, especially from high-altitude permafrost regions, is still scarce. Here, by combining field surveys, radio- and stable-carbon isotopic analyses, and metagenomic sequencing, we present multiple characteristics of CH4emissions from 120 thermokarst lakes in 30 clusters along a 1100 km transect on the Tibetan Plateau. We find that thermokarst lakes have high CH4emissions during the ice-free period (13.4 ± 1.5 mmol m−2d−1; mean ± standard error) across this alpine permafrost region. Ebullition constitutes 84% of CH4emissions, which are fueled primarily by young carbon decomposition through the hydrogenotrophic pathway. The relative abundances of methanogenic genes correspond to the observed CH4fluxes. Overall, multiple parameters obtained in this study provide benchmarks for better predicting the strength of permafrost carbon-climate feedback in high-altitude permafrost regions. 
    more » « less