skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiscale Velocity Gradients in Turbulence
Understanding and predicting turbulent flow phenomena remain a challenge for both theory and applications. The nonlinear and nonlocal character of small-scale turbulence can be comprehensively described in terms of the velocity gradients, which determine fundamental quantities like dissipation, enstrophy, and the small-scale topology of turbulence. The dynamical equation for the velocity gradient succinctly encapsulates the nonlinear physics of turbulence; it offers an intuitive description of a host of turbulence phenomena and enables establishing connections between turbulent dynamics, statistics, and flow structure. The consideration of filtered velocity gradients enriches this view to express the multiscale aspects of nonlinearity and flow structure in a formulation directly applicable to large-eddy simulations. Driven by theoretical advances together with growing computational and experimental capabilities, recent activities in this area have elucidated key aspects of turbulence physics and advanced modeling capabilities.  more » « less
Award ID(s):
2152373
PAR ID:
10496506
Author(s) / Creator(s):
;
Publisher / Repository:
Annual Reviews
Date Published:
Journal Name:
Annual Review of Fluid Mechanics
Volume:
56
Issue:
1
ISSN:
0066-4189
Page Range / eLocation ID:
463 to 490
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The interaction of a turbulent, spatially developing crossflow with a transverse jet possesses several engineering and technological applications such as film cooling of turbine blades, exhaust plumes, thrust vector control, fuel injection, etc. Direct Numerical Simulation (DNS) of a jet in a crossflow under different streamwise pressure gradients (zero and favorable pressure gradient) is carried out. The purpose is to study the physics behind the transport phenomena and coherent structure dynamics in turbulent crossflow jets at different streamwise pressure gradients and low/high-velocity ratios (0.5 and 1). The temperature was regarded as a passive scalar with a molecular Prandtl number of 0.71. The analysis is performed by prescribing accurate turbulent information (instantaneous velocity and temperature) at the inlet of a computational domain. The upward motion of low-momentum fluid created by the “legs” of the counter-rotating vortex pair (CVP) encounters the downward inviscid flow coming from outside of the turbulent boundary layer, inducing a stagnation point and a shear layer. This layer is characterized by high levels of turbulent mixing, turbulence production, turbulent kinetic energy (TKE) and thermal fluctuations. The formation and development of the above-mentioned shear layer are more evident at higher velocity ratios. 
    more » « less
  2. null (Ed.)
    A turbulence enrichment model for subfilter-scale motions in large eddy simulations (LES) is comprehensively evaluated in the context of a posteriori analysis. The paper further develops the Gabor mode enrichment model first introduced in Ghate & Lele (J. Fluid Mech., vol. 819, 2017, pp. 494–539) by analysing three key requisites of LES enrichment using solenoidal small-scale velocity fields: (a) consistent spectral extrapolation and improvement of resolved single- and two-point second-order correlations; (b) ability to accurately capture the flow physics responsible for temporal decorrelation at small scales; and (c) accurate representation of spatially localized and intermittent interscale energy transfer between scales resolved by the coarse-grid LES and subfilter scales. We argue that the spatially and spectrally localized Gabor wavepackets offer an optimal basis to represent small-scale turbulence within quasi-homogeneous regions, although the alignment of fine-scale vorticity with large-scale strain appears to be somewhat overemphasized. Consequently, we interpret the resulting subfilter scales as those induced by a set of spatially dispersed Burgers–Townsend vortices with orientations determined by the larger scale velocity gradients resolved by the coarse-grid LES. Enrichment of coarse-grid simulations of two high Reynolds number flow configurations, homogeneous isotropic turbulence and a rough-wall turbulent boundary layer show promising results. 
    more » « less
  3. Longmire, Ellen K; Westerweel, Jerry (Ed.)
    This study leverages a novel multi-fan flow-control instrument and a mechanized roughness element grid to simulate large- and small-scale turbulent features of atmospheric flows in a large boundary layer wind tunnel (BLWT). The flow-control instrument, termed the flow field modulator (FFM), is a computer-controlled 3 m × 6 m (2D) fan array located at the University of Florida (UF) Natural Hazard Engineering Research Infrastructure (NHERI) Experimental Facility. The system comprises 319 modular hexagonal aluminum cells, each equipped with shrouded three-blade corotating propellers. The FFM enables the active generation of large-scale turbulent structures by replicating user-specified velocity time signals to inject low-frequency fluctuations into BLWT flows. In the present work, the FFM operated in conjunction with a mechanized roughness element grid, called the Terraformer, located downstream of the FFM array. The Terraformer aided in the production of near-wall turbulent mixing through precise adjustment of the height of the roughness elements. A series of BLWT velocity profile measurement experiments were carried out at the UF BLWT test section for a set of turbulence intensity and integral length scale regimes. Input commands to the FFM and Terraformer were iteratively updated via a governing convergence algorithm (GCA) to achieve user-specified mean and turbulent flow statistics. Results demonstrate the capabilities of the FFM for significantly increasing the longitudinal integral length scales compared to conventional BLWT approaches (i.e., no active large-scale turbulence generation). The study also highlights the efficacy of the GCA scheme for attaining prescribed target mean and turbulent flow conditions at the measurement location. 
    more » « less
  4. Rotating and swirling turbulence comprises an important class of flows, not only due to the complex physics that occur, but also due to their relevance to many engineering applications, such as combustion, cyclone separation, mixing, etc. In these types of flows, rotation strongly affects the characteristics and structure of turbulence. However, the underlying turbulent flow phenomena are complex and currently not well understood. The axially rotating pipe is an exemplary prototypical model problem that exhibits these complex turbulent flow physics. By examining the complex interaction of turbulent structures within rotating turbulent pipe flow, insight can be gained into the behavior of rotating flows relevant to engineering applications. Direct numerical simulations are conducted at a bulk Reynolds number up to Re_D = 19,000 with rotation numbers ranging from N = 0 to 3. Coherence analysis, including Proper Orthogonal Decomposition and Dynamic Mode Decomposition, are used to identify the relevant (highest energy) modes of the flow. Studying the influence of these modes on turbulent statistics (i.e. mean statistics, Reynolds stresses, turbulent kinetic energy, and turbulent kinetic energy budgets) allow for a deeper understanding of the effects of coherent turbulent flow structures in rotating flows. 
    more » « less
  5. Abstract Recently, it has been realized that magnetic plasma turbulence and magnetic field reconnection are inherently related phenomena. Turbulent fluctuations generate regions of sheared magnetic field that become unstable to the tearing instability and reconnection, thus modifying turbulence at the corresponding scales. In this contribution, we give a brief review of some recent results on tearing‐mediated magnetic turbulence. We illustrate the main ideas of this rapidly developing field of study by concentrating on two important examples—magnetohydrodynamic Alfvén turbulence and small‐scale kinetic‐Alfvén turbulence. Due to various potential applications of these phenomena in space physics and astrophysics, we specifically try not to overload the text by heavy analytical derivations but rather present a qualitative discussion accessible to a non‐expert in the theories of turbulence and reconnection. 
    more » « less