skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reworking the Tao–Mo exchange–correlation functional. II. De-orbitalization
In Paper I [H. Francisco, A. C. Cancio, and S. B. Trickey, J. Chem. Phys. 159, 214102 (2023)], we gave a regularization of the Tao–Mo exchange functional that removes the order-of-limits problem in the original Tao–Mo form and also eliminates the unphysical behavior introduced by an earlier regularization while essentially preserving compliance with the second-order gradient expansion. The resulting simplified, regularized (sregTM) functional delivers performance on standard molecular and solid state test sets equal to that of the earlier revised, regularized Tao–Mo functional. Here, we address de-orbitalization of that new sregTM into a pure density functional. We summarize the failures of the Mejía-Rodríguez and Trickey de-orbitalization strategy [Phys. Rev. A 96, 052512 (2017)] when used with both versions. We discuss how those failures apparently arise in the so-called z′ indicator function and in substitutes for the reduced density Laplacian in the parent functionals. Then, we show that the sregTM functional can be de-orbitalized somewhat well with a rather peculiarly parameterized version of the previously used deorbitalizer. We discuss, briefly, a de-orbitalization that works in the sense of reproducing error patterns but that apparently succeeds by cancelation of major qualitative errors associated with the de-orbitalized indicator functions α and z, hence, is not recommended. We suggest that the same issue underlies the earlier finding of comparatively mediocre performance of the de-orbitalized Tao–Perdew–Staroverov–Scuseri functional. Our work demonstrates that the intricacy of such two-indicator functionals magnifies the errors introduced by the Mejía-Rodríguez and Trickey de-orbitalization approach in ways that are extremely difficult to analyze and correct.  more » « less
Award ID(s):
1912618
PAR ID:
10496520
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
159
Issue:
21
ISSN:
0021-9606
Subject(s) / Keyword(s):
Density functional theory meta-GGa de-orbitalization
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The revised, regularized Tao–Mo (rregTM) exchange-correlation density functional approximation (DFA) [A. Patra, S. Jana, and P. Samal, J. Chem. Phys. 153, 184112 (2020) and Jana et al., J. Chem. Phys. 155, 024103 (2021)] resolves the order-of-limits problem in the original TM formulation while preserving its valuable essential behaviors. Those include performance on standard thermochemistry and solid data sets that is competitive with that of the most widely explored meta-generalized-gradient-approximation DFAs (SCAN and r2SCAN) while also providing superior performance on elemental solid magnetization. Puzzlingly however, rregTM proved to be intractable for de-orbitalization via the approach of Mejía-Rodríguez and Trickey [Phys. Rev. A 96, 052512 (2017)]. We report investigation that leads to diagnosis of how the regularization in rregTM of the z indicator functions (z = the ratio of the von-Weizsäcker and Kohn–Sham kinetic energy densities) leads to non-physical behavior. We propose a simpler regularization that eliminates those oddities and that can be calibrated to reproduce the good error patterns of rregTM. We denote this version as simplified, regularized Tao–Mo, sregTM. We also show that it is unnecessary to use rregTM correlation with sregTM exchange: Perdew–Burke–Ernzerhof correlation is sufficient. The subsequent paper shows how sregTM enables some progress on de-orbitalization. 
    more » « less
  2. We reformulate the thermally assisted-occupation density functional theory (TAO-DFT) into the Kohn–Sham single-determinant framework and construct two new post-self-consistent field (post-SCF) static correlation correction schemes, named rTAO and rTAO-1. In contrast to the original TAO-DFT with the density in an ensemble form, in which each orbital density is weighted with a fractional occupation number, the ground-state density is given by a single-determinant wavefunction, a regular Kohn–Sham (KS) density, and total ground state energy is expressed in the normal KS form with a static correlation energy formulated in terms of the KS orbitals. In post-SCF calculations with rTAO functionals, an efficient energy scanning to quantitatively determine θ is also proposed. The rTAOs provide a promising method to simulate systems with strong static correlation as original TAO, but simpler and more efficient. We show that both rTAO and rTAO-1 is capable of reproducing most results from TAO-DFT without the additional functional Eθ used in TAO-DFT. Furthermore, our numerical results support that, without the functional Eθ, both rTAO and rTAO-1 can capture correct static correlation profiles in various systems. 
    more » « less
  3. In this work, we introduce the concept of a tunable noninteracting free-energy density functional and present two examples realized: (i) via a simple one-parameter convex combination of two existing functionals and (ii) via the construction of a generalized gradient approximation (GGA) enhancement factor that contains one free parameter and is designed to satisfy a set of incorporated constraints. Functional (i), constructed as a combination of the local Thomas–Fermi and a pseudopotential-adapted GGA for the noninteracting free-energy, has already demonstrated its practical usability for establishing the high temperature end of the equation of state of deuterium [Phys. Rev. B 104, 144104 (2021)] and CHON resin [Phys. Rev. E 106, 045207 (2022)] for inertial confinement fusion applications. Hugoniot calculations for liquid deuterium are given as another example of how the application of computationally efficient orbital-free density functional theory (OF-DFT) can be utilized with the employment of the developed functionals. Once the functionals have been tuned such that the OF-DFT Hugoniot calculation matches the Kohn–Sham solution at some low-temperature point, agreement with the reference Kohn–Sham results for the rest of the high temperature Hugoniot path is very good with relative errors for compression and pressure on the order of 2% or less. 
    more » « less
  4. Empirical fitting of parameters in approximate density functionals is common. Such fits conflate errors in the self-consistent density with errors in the energy functional, but density-corrected DFT (DC-DFT) separates these two. We illustrate with catastrophic failures of a toy functional applied to H2+ at varying bond lengths, where the standard fitting procedure misses the exact functional; Grimme’s D3 fit to noncovalent interactions, which can be contaminated by large density errors such as in the WATER27 and B30 data sets; and double-hybrids trained on self-consistent densities, which can perform poorly on systems with density-driven errors. In these cases, more accurate results are found at no additional cost by using Hartree–Fock (HF) densities instead of self-consistent densities. For binding energies of small water clusters, errors are greatly reduced. Range-separated hybrids with 100% HF at large distances suffer much less from this effect. 
    more » « less
  5. Lattice thermal conductivity (κL) is a crucial characteristic of crystalline solids with significant implications for thermal management, energy conversion, and thermal barrier coating. The advancement of computational tools based on density functional theory (DFT) has enabled the effective utilization of phonon quasi-particle-based approaches to unravel the underlying physics of various crystalline systems. While the higher order of anharmonicity is commonly used for explaining extraordinary heat transfer behaviors in crystals, the impact of exchange-correlation (XC) functionals in DFT on describing anharmonicity has been largely overlooked. The XC functional is essential for determining the accuracy of DFT in describing interactions among electrons/ions in solids and molecules. However, most XC functionals in solid-state physics are primarily focused on computing the properties that only require small atomic displacements from the equilibrium (within the harmonic approximation), such as harmonic phonons and elastic constants, while anharmonicity involves larger atomic displacements. Therefore, it is more challenging for XC functionals to accurately describe atomic interactions at the anharmonicity level. In this study, we systematically investigate the room-temperature κL of 16 binary compounds with rocksalt and zincblende structures using var- ious XC functionals such as local density approximation (LDA), Perdew-Burke-Ernzerhof (PBE), revised PBE for solid and surface (PBEsol), optimized B86b functional (optB86b), revised Tao-Perdew-Staroverov-Scuseria (revTPSS), strongly constrained and appropriately normed functional (SCAN), regularized SCAN (rSCAN) and regularized-restored SCAN (r2SCAN) in combination with different perturbation orders, including phonon within harmonic approximation (HA) plus three- phonon scattering (HA+3ph), phonon calculated using self-consistent phonon theory (SCPH) plus three-phonon scattering (SCPH+3ph), and SCPH phonon plus three- and four-phonon scattering (SCPH+3,4ph). Our results show that the XC functional exhibits strong entanglement with perturbation order and the mean relative absolute error (MRAE) of the computed κL is strongly influenced by both the XC functional and perturbation order, leading to error cancellation or amplification. The minimal (maximal) MRAE is achieved with revTPSS (rSCAN) at the HA+3ph level, SCAN (r2SCAN) at the SCPH+3ph level, and PBEsol (rSCAN) at the SCPH+3,4ph level. Among these functionals, PBEsol exhibits the highest accuracy at the highest perturbation order. The SCAN- related functionals demonstrate moderate accuracy but are suffer from numerical instability and high computational costs. Furthermore, the different impacts of quartic anharmonicity on κL in rocksalt and zincblende structures are identified by all XC functionals, attributed to the distinct lattice anharmonicity in these two structures. These findings serve as a valuable reference for selecting appropriate functionals for describing anharmonic phonons and offer insights into high-order force constant calculations that could facilitate the development of more accurate XC functionals for solid materials. 
    more » « less