skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leibniz International Proceedings in Informatics (LIPIcs):15th Innovations in Theoretical Computer Science Conference (ITCS 2024)
Algorithms with predictions is a new research direction that leverages machine learned predictions for algorithm design. So far a plethora of recent works have incorporated predictions to improve on worst-case bounds for online problems. In this paper, we initiate the study of complexity of dynamic data structures with predictions, including dynamic graph algorithms. Unlike online algorithms, the goal in dynamic data structures is to maintain the solution efficiently with every update. We investigate three natural models of prediction: (1) δ-accurate predictions where each predicted request matches the true request with probability δ, (2) list-accurate predictions where a true request comes from a list of possible requests, and (3) bounded delay predictions where the true requests are a permutation of the predicted requests. We give general reductions among the prediction models, showing that bounded delay is the strongest prediction model, followed by list-accurate, and δ-accurate. Further, we identify two broad problem classes based on lower bounds due to the Online Matrix Vector (OMv) conjecture. Specifically, we show that locally correctable dynamic problems have strong conditional lower bounds for list-accurate predictions that are equivalent to the non-prediction setting, unless list-accurate predictions are perfect. Moreover, we show that locally reducible dynamic problems have time complexity that degrades gracefully with the quality of bounded delay predictions. We categorize problems with known OMv lower bounds accordingly and give several upper bounds in the delay model that show that our lower bounds are almost tight. We note that concurrent work by v.d.Brand et al. [SODA '24] and Liu and Srinivas [arXiv:2307.08890] independently study dynamic graph algorithms with predictions, but their work is mostly focused on showing upper bounds.  more » « less
Award ID(s):
2223282 2217058
PAR ID:
10496598
Author(s) / Creator(s):
; ; ;
Editor(s):
Guruswami, Venkatesan
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Journal Name:
15th Innovations in Theoretical Computer Science Conference, {ITCS}
ISSN:
1608-1218
Subject(s) / Keyword(s):
Dynamic Graph Algorithms Algorithms with Predictions Theory of computation → Dynamic graph algorithms
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this article, we initiate the study of the weighted paging problem with predictions. This continues the recent line of work in online algorithms with predictions, particularly that of Lykouris and Vassilvitski (ICML 2018) and Rohatgi (SODA 2020) on unweighted paging with predictions. We show that unlike unweighted paging, neither a fixed lookahead nor a knowledge of the next request for every page is sufficient information for an algorithm to overcome the existing lower bounds in weighted paging. However, a combination of the two, which we call strong per request prediction (SPRP), suffices to give a 2-competitive algorithm. We also explore the question of gracefully degrading algorithms with increasing prediction error, and give both upper and lower bounds for a set of natural measures of prediction error. 
    more » « less
  2. Abstract The configuration balancing problem with stochastic requests generalizes well-studied resource allocation problems such as load balancing and virtual circuit routing. There are givenmresources andnrequests; each request has multiple possibleconfigurations, each of which increases the load of each resource by some amount. The goal is to select one configuration for each request to minimize themakespan: the load of the most-loaded resource. In the stochastic setting, the amount by which a configuration increases the resource load is uncertain until the configuration is chosen, but we are given a probability distribution. We develop both offline and online algorithms for configuration balancing with stochastic requests. When the requests are known offline, we give a non-adaptive policy for configuration balancing with stochastic requests that$$O(\frac{\log m}{\log \log m})$$ O ( log m log log m ) -approximates the optimal adaptive policy, which matches a known lower bound for the special case of load balancing on identical machines. When requests arrive online in a list, we give a non-adaptive policy that is$$O(\log m)$$ O ( log m ) competitive. Again, this result is asymptotically tight due to information-theoretic lower bounds for special cases (e.g., for load balancing on unrelated machines). Finally, we show how to leverage adaptivity in the special case of load balancing onrelatedmachines to obtain a constant-factor approximation offline and an$$O(\log \log m)$$ O ( log log m ) -approximation online. A crucial technical ingredient in all of our results is a new structural characterization of the optimal adaptive policy that allows us to limit the correlations between its decisions. 
    more » « less
  3. Statistics of small subgraph counts such as triangles, four-cycles, and s-t paths of short lengths reveal important structural properties of the underlying graph. These problems have been widely studied in social network analysis. In most relevant applications, the graphs are not only massive but also change dynamically over time. Most of these problems become hard in the dynamic setting when considering the worst case. In this paper, we ask whether the question of small subgraph counting over dynamic graphs is hard also in the average case. We consider the simplest possible average case model where the updates follow an Erdős-Rényi graph: each update selects a pair of vertices (u, v) uniformly at random and flips the existence of the edge (u, v). We develop new lower bounds and matching algorithms in this model for counting four-cycles, counting triangles through a specified point s, or a random queried point, and st paths of length 3, 4 and 5. Our results indicate while computing st paths of length 3, and 4 are easy in the average case with O(1) update time (note that they are hard in the worst case), it becomes hard when considering st paths of length 5. We introduce new techniques which allow us to get average-case hardness for these graph problems from the worst-case hardness of the Online Matrix vector problem (OMv). Our techniques rely on recent advances in fine-grained average-case complexity. Our techniques advance this literature, giving the ability to prove new lower bounds on average-case dynamic algorithms. Read More: https://epubs.siam.org/doi/abs/10.1137/1.9781611977073.23 
    more » « less
  4. An important goal of modern scheduling systems is to efficiently manage power usage. In energy-efficient scheduling, the operating system controls the speed at which a machine is processing jobs with the dual objective of minimizing energy consumption and optimizing the quality of service cost of the resulting schedule. Since machine-learned predictions about future requests can often be learned from historical data, a recent line of work on learning-augmented algorithms aims to achieve improved performance guarantees by leveraging predictions. In particular, for energy-efficient scheduling, Bamas et. al. [NeurIPS '20] and Antoniadis et. al. [SWAT '22] designed algorithms with predictions for the energy minimization with deadlines problem and achieved an improved competitive ratio when the prediction error is small while also maintaining worst-case bounds even when the prediction error is arbitrarily large. In this paper, we consider a general setting for energy-efficient scheduling and provide a flexible learning-augmented algorithmic framework that takes as input an offline and an online algorithm for the desired energy-efficient scheduling problem. We show that, when the prediction error is small, this framework gives improved competitive ratios for many different energy-efficient scheduling problems, including energy minimization with deadlines, while also maintaining a bounded competitive ratio regardless of the prediction error. Finally, we empirically demonstrate that this framework achieves an improved performance on real and synthetic datasets. 
    more » « less
  5. Tauman_Kalai, Yael (Ed.)
    Consider an agent exploring an unknown graph in search of some goal state. As it walks around the graph, it learns the nodes and their neighbors. The agent only knows where the goal state is when it reaches it. How do we reach this goal while moving only a small distance? This problem seems hopeless, even on trees of bounded degree, unless we give the agent some help. This setting with "help" often arises in exploring large search spaces (e.g., huge game trees) where we assume access to some score/quality function for each node, which we use to guide us towards the goal. In our case, we assume the help comes in the form of distance predictions: each node v provides a prediction f(v) of its distance to the goal vertex. Naturally if these predictions are correct, we can reach the goal along a shortest path. What if the predictions are unreliable and some of them are erroneous? Can we get an algorithm whose performance relates to the error of the predictions? In this work, we consider the problem on trees and give deterministic algorithms whose total movement cost is only O(OPT + Δ ⋅ ERR), where OPT is the distance from the start to the goal vertex, Δ the maximum degree, and the ERR is the total number of vertices whose predictions are erroneous. We show this guarantee is optimal. We then consider a "planning" version of the problem where the graph and predictions are known at the beginning, so the agent can use this global information to devise a search strategy of low cost. For this planning version, we go beyond trees and give an algorithms which gets good performance on (weighted) graphs with bounded doubling dimension. 
    more » « less