skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling time-varying phytoplankton subsidy reveals at-risk species in a Chilean intertidal ecosystem
Abstract The allometric trophic network (ATN) framework for modeling population dynamics has provided numerous insights into ecosystem functioning in recent years. Herein we extend ATN modeling of the intertidal ecosystem off central Chile to include empirical data on pelagic chlorophyll-a concentration. This intertidal community requires subsidy of primary productivity to support its rich ecosystem. Previous work models this subsidy using a constant rate of phytoplankton input to the system. However, data shows pelagic subsidies exhibit highly variable, pulse-like behavior. The primary contribution of our work is incorporating this variable input into ATN modeling to simulate how this ecosystem may respond to pulses of pelagic phytoplankton. Our model results show that: (1) closely related sea snails respond differently to phytoplankton variability, which is explained by the underlying network structure of the food web; (2) increasing the rate of pelagic-intertidal mixing increases fluctuations in species’ biomasses that may increase the risk of local extirpation; (3) predators are the most sensitive species to phytoplankton biomass fluctuations, putting these species at greater risk of extirpation than others. Finally, our work provides a straightforward way to incorporate empirical, time-series data into the ATN framework that will expand this powerful methodology to new applications.  more » « less
Award ID(s):
2224915
PAR ID:
10496692
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The question of what mechanisms maintain tropical biodiversity is a critical frontier in ecology, intensified by the heightened risk of biodiversity loss faced in tropical regions. Ecological theory has shed light on multiple mechanisms that could lead to the high levels of biodiversity in tropical forests. But variation in species abundances over time may be just as important as overall biodiversity, with a more immediate connection to the risk of extirpation and biodiversity loss. Despite the urgency, our understanding of the primary mechanisms driving fluctuations in species abundances has not been clearly established. Here, we introduce a theoretical framework based around life history; the schedule of birth, growth, and mortality over a lifespan, and its systematic variation across species. We develop a mean field model to predict expected fluctuations in abundance for a focal species in a larger community, and we quantify empirical life history variation among 90 tropical forest species in a 50 ha plot in Panama. Putting theory and data together, we show that life history provides a critical piece of this puzzle, allowing us to explain patterns of abundance fluctuations more accurately than previous models incorporating demographic stochasticity without life history variation, and without introducing unobserved couplings between species and their environment. This framework provides a starting point for more general models that incorporate multiple factors in addition to life history variation, and suggests the potential for a fine-grained assessment of extirpation risk based on the impacts of anthropogenic change on demographic rates across life stages. 
    more » « less
  2. Abstract To cope with uncertainty and variability in their environment, plants evolve distinct life‐history strategies by allocating different fractions of energy to growth, survival and fecundity. These differences in life‐history strategies could potentially influence ecosystem‐level dynamics, such as the sensitivity of primary production to resource fluctuations. However, linkages between evolutionary and ecosystem dynamics are not well understood.We used an annual plant population model to ask, when might differences in plant life‐history strategies produce differences in the sensitivity of primary production to resource fluctuations?Consistent with existing theory, we found that a highly variable and unpredictable environment led to the evolution of a conservative strategy characterized by relatively low and invariant germination fractions, while a variable but predictable environment favoured a riskier strategy featuring more variable germination fractions. Unexpectedly, we found that the influence of life‐history strategy on the sensitivity of production to resource fluctuations depended on competitive interactions, specifically the rate at which production saturates with the number of competing individuals. Rapid saturation overwhelms the influence of life‐history strategy, but when production saturates more slowly, the risky strategy translated to high sensitivity, whereas the conservative strategy translated to low sensitivity.Empirical estimates from Sonoran Desert annual plant populations indicate that production saturates relatively rapidly with the number of individuals for most species, suggesting that life‐history differences are unlikely to alter sensitivity of production to resource fluctuations, at least in this community.Synthesis. Our modelling results imply that research to understand the sensitivity of primary production to resource fluctuations should focus more on the intraspecific competitive interactions shaping the density–yield relationship than on the life‐history strategies that determine temporal risk‐spreading. 
    more » « less
  3. To assess protistan grazing impact and temperature sensitivity on plankton population dynamics, we measured bulk and species-specific phytoplankton growth and herbivorous protist grazing rates in Disko Bay, West Greenland in April-May 2011. Rate estimates were made at three different temperatures in situ (0 °C), +3 °C and +6 °C over ambient. In situ Chlorophyll a (Chl a ) doubled during the observation period to ∼12  µg Chl a L −1 , with 60–97% of Chl a in the >20 µm size-fraction dominated by the diatom genus Chaetoceros. Herbivorous dinoflagellates comprised 60–80% of microplankton grazer biomass. At in situ temperatures, phytoplankton growth or grazing by herbivorous predators <200 µm was not measurable until 11 days after observations commenced. Thereafter, phytoplankton growth was on average 0.25 d −1 . Phytoplankton mortality due to herbivorous grazing was only measured on three occasions but the magnitude was substantial, up to 0.58 d −1 . Grazing of this magnitude removed ∼100% of primary production. In short-term temperature-shift incubation experiments, phytoplankton growth rate increased significantly (20%) at elevated temperatures. In contrast, herbivorous protist grazing and species-specific growth rates decreased significantly (50%) at +6 °C. This differential response in phytoplankton and herbivores to temperature increases resulted in a decrease of primary production removed with increasing temperature. Phaeocystis spp. abundance was negatively correlated with bulk grazing rate. Growth and grazing rates were variable but showed no evidence of an inherent, low temperature limitation. Herbivorous protist growth rates in this study and in a literature review were comparable to rates from temperate waters. Thus, an inherent physiological inhibition of protistan growth or grazing rates in polar waters is not supported by the data. The large variability between lack of grazing and high rates of primary production removal observed here and confirmed in the literature for polar waters implies larger amplitude fluctuations in phytoplankton biomass than slower, steady grazing losses of primary production. 
    more » « less
  4. Abstract Temperature is a major driver of phytoplankton growth and physiology, but despite decades of study on temperature effects, the influence of temperature fluctuations on the growth acclimation of marine phytoplankton is largely unknown. To address this knowledge gap, we subjected a coastal phytoplankton species,Heterosigma akashiwo, to ecologically relevant temperature shifts of 2–3°C, cumulatively totaling 3–16°C across a range from 6°C to 31°C over a 3‐week period. Using a symmetric design, we show time dependent differences between growth rates and that these changes were related to the magnitude of the temperature shift, but not the direction. Cell size scaled inversely with temperature at a rate of −1.9 to −3.3%°C−1at all except the highest temperature treatments > 25°C. Intraspecific variability in growth rates increased exponentially with cumulative thermal shifts, suggesting thermal variability may be a driver of intraspecific variation. The observed acclimation effects on phytoplankton growth rates suggest that ignoring acclimation effects could systematically under or overestimate temperature‐dependent primary production. Empirical results, contextualized with in situ coastal ocean temperature record, demonstrated that daily primary production could differ from current model assumptions utilizing acclimated rates by −33% to +36%. If broadly applicable to diverse phytoplankton species, these results have ramifications for predicting the ecology and production of phytoplankton in present day dynamic ecosystems and in future climate scenarios where thermal variability is expected to increase. 
    more » « less
  5. Abstract Marine microbial communities in coastal environments are subject to both seasonal fluctuations and anthropogenic alterations of environmental conditions. The separate influences of temperature and resource‐dependency on phytoplankton growth, community, and ecosystem metabolism are relatively well understood. However, winners and losers in the ocean are determined based on the interplay among often rapidly changing biological, chemical and physical drivers. The direct, indirect, and interactive effects of these conditions on planktonic food web structure and function are poorly constrained. Here, we investigated how simultaneous manipulation of temperature and nutrient availability affects trophic transfer from phytoplankton to herbivorous protists, and their resulting implications at the ecosystem level. Temperature directly affected herbivorous protist composition; ciliates dominated (66%) in colder treatment and dinoflagellates (60%) at warmer temperatures. Throughout the experiments, grazing rates were < 0.1 d−1, with higher rates at subzero temperatures. Overall, the nutrient–temperature interplay affected trophic transfer rates antagonistically when nutrients were amended, and synergistically, when nutrients were not added. This interaction resulted in higher percentages of primary production consumed under nutrient unamended compared to nutrient amended conditions. At the ecosystem level, these changes may determine the fate of primary production, with most of the production likely exported out of the pelagic zone in high‐temperature and nutrient conditions, while high‐temperature and low‐nutrient availability strengthened food web coupling and enhanced trophic transfer. These results imply that in warming oceans, management of coastal nutrient loading will be a critical determinant of the degree of primary production removal by microzooplankton and dependent ecosystem production. 
    more » « less