skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Giant Modulation of Refractive Index from Picoscale Atomic Displacements
Abstract Structural disorder has been shown to enhance and modulate magnetic, electrical, dipolar, electrochemical, and mechanical properties of materials. However, the possibility of obtaining novel optical and optoelectronic properties from structural disorder remains an open question. Here, we show unambiguous evidence of disorder — in the form of anisotropic, picoscale atomic displacements — modulating the refractive index tensor and resulting in the giant optical anisotropy observed in BaTiS3, a quasi‐one‐dimensional hexagonal chalcogenide. Single crystal X‐ray diffraction studies reveal the presence of antipolar displacements of Ti atoms within adjacent TiS6chains along thec‐axis, and three‐fold degenerate Ti displacements in thea‐bplane.47/49Ti solid‐state NMR provides additional evidence for those Ti displacements in the form of a three‐horned NMR lineshape resulting from a low symmetry local environment around Ti atoms. We used scanning transmission electron microscopy to directly observe the globally disordered Tia‐bplane displacements and find them to be ordered locally over a few unit cells. First‐principles calculations show that the Tia‐bplane displacements selectively reduce the refractive index along theab‐plane, while having minimal impact on the refractive index along the chain direction, thus resulting in a giant enhancement in the optical anisotropy. By showing a strong connection between structural disorder with picoscale displacements and the optical response in BaTiS3, this study opens a pathway for designing optical materials with high refractive index and functionalities such as large optical anisotropy and nonlinearity. This article is protected by copyright. All rights reserved  more » « less
Award ID(s):
2122070 2145797 2122071
PAR ID:
10496751
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Materials
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Polarimetric infrared (IR) detection bolsters IR thermography by leveraging the polarization of light. Optical anisotropy, i.e., birefringence and dichroism, can be leveraged to achieve polarimetric detection. Recently, giant optical anisotropy is discovered in quasi‐1D narrow‐bandgap hexagonal perovskite sulfides, A1+xTiS3, specifically BaTiS3and Sr9/8TiS3. In these materials, the critical role of atomic‐scale structure modulations in the unconventional electrical, optical, and thermal properties raises the broader question of the nature of other materials that belong to this family. To address this issue, for the first time, high‐quality single crystals of a largely unexplored member of the A1+xTiX3(X = S, Se) family, BaTiSe3are synthesized. Single‐crystal X‐ray diffraction determined the room‐temperature structure with theP31cspace group, which is a superstructure of the earlier reportedP63/mmcstructure. The crystal structure of BaTiSe3features antiparallelc‐axis displacements similar to but of lower symmetry than BaTiS3, verified by the polarization dependent Raman spectroscopy. Fourier transform infrared (FTIR) spectroscopy is used to characterize the optical anisotropy of BaTiSe3, whose refractive index along the ordinary (E⊥c) and extraordinary (E‖c) optical axes is quantitatively determined by combining ellipsometry studies with FTIR. With a giant birefringence Δn∼ 0.9, BaTiSe3emerges as a new candidate for miniaturized birefringent optics for mid‐wave infrared to long‐wave infrared imaging. 
    more » « less
  2. Abstract Noncollinear ferroic materials are sought after as testbeds to explore the intimate connections between topology and symmetry, which result in electronic, optical, and magnetic functionalities not observed in collinear ferroic materials. For example, ferroaxial materials have rotational structural distortions that break mirror symmetry and induce chirality. When ferroaxial order is coupled with ferroelectricity arising from a broken inversion symmetry, it offers the prospect of electric‐field‐control of the ferroaxial distortions and opens up new tunable functionalities. However, chiral multiferroics, especially ones stable at room temperature, are rare. A strain‐stabilized, room‐temperature chiral multiferroic phase in single crystals of BaTiS3is reported here. Using first‐principles calculations, the stabilization of this multiferroic phase havingP63space group for biaxial tensile strains exceeding 1.5% applied on the basalab‐plane of the room temperatureP63cmphase of BaTiS3is predicted. The chiral multiferroic phase is characterized by rotational distortions of TiS6octahedra around the longc‐axis and polar displacement of Ti atoms along thec‐axis. The ferroaxial and ferroelectric distortions and their domains inP63‐BaTiS3are directly resolved using atomic resolution scanning transmission electron microscopy. Landau‐based phenomenological modeling predicts a strong coupling between the ferroelectric and the ferroaxial order makingP63‐BaTiS3an attractive test bed for achieving electric‐field‐control of chirality. 
    more » « less
  3. Abstract BaTiS3, a quasi-1D complex chalcogenide, has gathered considerable scientific and technological interest due to its giant optical anisotropy and electronic phase transitions. However, the synthesis of high-quality BaTiS3crystals, particularly those featuring crystal sizes of millimeters or larger, remains a challenge. Here, we investigate the growth of BaTiS3crystals utilizing a molten salt flux of either potassium iodide, or a mixture of barium chloride and barium iodide. The crystals obtained through this method exhibit a substantial increase in volume compared to those synthesized via the chemical vapor transport method, while preserving their intrinsic optical and electronic properties. Our flux growth method provides a promising route toward the production of high-quality, large-scale single crystals of BaTiS3, which will greatly facilitate advanced characterizations of BaTiS3and its practical applications that require large crystal dimensions. Additionally, our approach offers an alternative synthetic route for other emerging complex chalcogenides. Graphical Abstract 
    more » « less
  4. Abstract The development of a low‐cost photopolymer resin to fabricate optical glass of high refractive index for plastic optics is reported. This new free radically polymerizable photopolymer resin, termed, disulfide methacrylate resin (DSMR) is synthesized by the direct addition of allyl methacrylate to a commodity sulfur petrochemical, sulfur monochloride (S2Cl2). The rapid rates of free radical photopolymerization confer significant advantages in preparing high‐quality, bulk optical glass. The low‐cost, optical glass produced from this photopolymer possesses a desirable combination of high refractive index (n ≈ 1.57–1.59), low birefringence (Δn < 10−4), high glass transition values (Tg ≈ 100 °C), along with optical transparency rivaling, or exceeding that of poly(methyl methacrylate) (PMMA) as indicated by very low optical absorption coefficients (α < 0.05 cm−1at 1310 nm) measured for thick glass DSMR photopolymer samples (diameter (D) = 25 mm; thickness = 1–30 mm). The versatile manufacturability of DSMR photopolymers for both molding and diamond turn machining methods is demonstrated to prepare precision optics and nano‐micropatterned arrays. Finally, large‐scale 3D printing vat photopolymerization of DSMR using high‐area rapid printing digital light processing additive manufacturing is demonstrated. 
    more » « less
  5. Abstract Discovery of new materials with enhanced optical properties in the visible and UV‐C range can impact applications in lasers, nonlinear optics, and quantum optics. Here, the optical floating zone growth of a family of rare earth borates,RBa3(B3O6)3(R= Nd, Sm, Tb, Dy, and Er), with promising linear and nonlinear optical (NLO) properties is reported. Although previously identified to be centrosymmetric, the X‐ray analysis combined with optical second harmonic generation (SHG) assigns the noncentrosymmetricPspace group to these crystals. Characterization of linear optical properties reveals a direct bandgap of ≈5.61–5.72 eV and strong photoluminescence in both the visible and mid‐IR regions. Anisotropic linear and nonlinear optical characterization reveals both Type‐I and Type‐II SHG phase matchability, with the highest effective phase‐matched SHG coefficient of 1.2 pm V−1at 800‐nm fundamental wavelength (for DyBa3(B3O6)3), comparable to β‐BaB2O4(phase‐matchedd22≈ 1.9 pm V−1). Laser‐induced surface damage threshold for these environmentally stable crystals is 650–900 GW cm−2, which is four to five times higher than that of β‐BaB2O4, thus providing an opportunity to pump with significantly higher power to generate about six to seven times stronger SHG light. Since the SHG arises from disorder on the Ba‐site, significantly larger SHG coefficients may be realized by “poling” the crystals to align the Ba displacements. These properties motivate further development of this crystal family for laser and wide bandgap NLO applications. 
    more » « less