skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: WattScope: Non-intrusive application-level power disaggregation in datacenters
Datacenter capacity is growing exponentially to satisfy the increasing demand for many emerging computationally-intensive applications, such as deep learning. This trend has led to concerns over datacenters’ increasing energy consumption and carbon footprint. The most basic prerequisite for optimizing a datacenter’s energy- and carbon-efficiency is accurately monitoring and attributing energy consumption to specific users and applications. Since datacenter servers tend to be multi-tenant, i.e., they host many applications, server- and rack-level power monitoring alone does not provide insight into the energy usage and carbon emissions of their resident applications. At the same time, current application-level energy monitoring and attribution techniques are intrusive: they require privileged access to servers and necessitate coordinated support in hardware and software, neither of which is always possible in cloud environments. To address the problem, we design WattScope, a system for non-intrusively estimating the power consumption of individual applications using external measurements of a server’s aggregate power usage and without requiring direct access to the server’s operating system or applications. Our key insight is that, based on an analysis of production traces, the power characteristics of datacenter workloads, e.g., low variability, low magnitude, and high periodicity, are highly amenable to disaggregation of a server’s total power consumption into application-specific values. WattScope adapts and extends a machine learning-based technique for disaggregating building power and applies it to server- and rack-level power meter measurements that are already available in data centers. We evaluate WattScope’s accuracy on a production workload and show that it yields high accuracy, e.g., often 10% normalized mean absolute error, and is thus a potentially useful tool for datacenters in externally monitoring application-level power usage.  more » « less
Award ID(s):
2105494 2213636
PAR ID:
10496891
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Performance Evaluation
Date Published:
Journal Name:
Performance Evaluation
Volume:
162
Issue:
C
ISSN:
0166-5316
Page Range / eLocation ID:
102369
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. WattScope is a system for non-intrusively estimating the power consumption of individual applications using external measurements of a server's aggregate power usage and without requiring direct access to the server's operating system or applications. Our key insight is that, based on an analysis of production traces, the power characteristics of datacenter workloads, e.g., low variability, low magnitude, and high periodicity, are highly amenable to disaggregation of a server's total power consumption into application-specific values. WattScope adapts and extends a machine learning-based technique for disaggregating building power and applies it to server- and rack-level power measurements that are already available in datacenters. We evaluate WattScope's accuracy on a production workload and show that it yields high accuracy, e.g., often <∼10% normalized mean absolute error, and is thus a potentially useful tool for datacenters in externally monitoring application-level power usage. 
    more » « less
  2. null (Ed.)
    Low-latency online services have strict Service Level Objectives (SLOs) that require datacenter systems to support high throughput at microsecond-scale tail latency. Dataplane operating systems have been designed to scale up multi-core servers with minimal overhead for such SLOs. However, as application demands continue to increase, scaling up is not enough, and serving larger demands requires these systems to scale out to multiple servers in a rack. We present RackSched, the first rack-level microsecond-scale scheduler that provides the abstraction of a rack-scale computer (i.e., a huge server with hundreds to thousands of cores) to an external service with network-system co-design. The core of RackSched is a two-layer scheduling framework that integrates inter-server scheduling in the top-of-rack (ToR) switch with intra-server scheduling in each server. We use a combination of analytical results and simulations to show that it provides near-optimal performance as centralized scheduling policies, and is robust for both low-dispersion and high-dispersion workloads. We design a custom switch data plane for the inter-server scheduler, which realizes power-of-k- choices, ensures request affinity, and tracks server loads accurately and efficiently. We implement a RackSched prototype on a cluster of commodity servers connected by a Barefoot Tofino switch. End-to-end experiments on a twelve-server testbed show that RackSched improves the throughput by up to 1.44x, and scales out the throughput near linearly, while maintaining the same tail latency as one server until the system is saturated. 
    more » « less
  3. As modern server GPUs are increasingly power intensive, better power management mechanisms can significantly reduce the power consumption, capital costs, and carbon emissions in large cloud datacenters. This letter uses diverse datacenter workloads to study the power management capabilities of modern GPUs. We find that current GPU management mechanisms have limited compatibility and monitoring support under cloud virtualization. They have sub-optimal, imprecise, and non-intuitive implementations of Dynamic Voltage and Frequency Scaling (DVFS) and power capping. Consequently, efficient GPU power management is not widely deployed in clouds today. To address these issues, we make actionable recommendations for GPU vendors and researchers. 
    more » « less
  4. The growing demands for computational power in cloud computing have led to a significant increase in the deployment of high-performance servers. The growing power consumption of servers and the heat they produce is on track to outpace the capacity of conventional air cooling systems, necessitating more efficient cooling solutions such as liquid immersion cooling. The superior heat exchange capabilities of immersion cooling both eliminates the need for bulky heat sinks, fans, and air flow channels while also unlocking the potential go beyond conventional 2D blade servers to three-dimensional designs. In this work, we present a computational framework to explore designs of servers in three-dimensional space, specifically targeting the maximization of server density within immersion cooling tanks. Our tool is designed to handle a variety of physical and electrical server design constraints. We demonstrate our optimized designs can reduce server volume by 25--52% compared to traditional flat server designs. This increased density reduces land usage as well as the amount of liquid used for immersion, with significant reduction in the carbon emissions embodied in datacenter buildings. We further create physical prototypes to simulate dense server designs and perform real-world experiments in an immersion cooling tank demonstrating they operate at safe temperatures. This approach marks a critical step forward in sustainable and efficient datacenter management. 
    more » « less
  5. Embodied carbon has been widely reported as a significant component in the full system lifecycle of various computing systems green house gas emissions. Many efforts have been undertaken to quantify the elements that comprise this embodied carbon, from tools that evaluate semiconductor manufacturing to those that can quantify different elements of the computing system from commercial and academic sources. However, these tools cannot easily reproduce results reported by server vendors' product carbon reports and the accuracy can vary substantially due to various assumptions. Furthermore, attempts to determine green house gas contributions using bottom-up methodologies often do not agree with system-level studies and are hard to rectify. Nonetheless, given there is a need to consider all contributions to green house gas emissions in datacenters, we propose SCARIF, the Server Carbon including Accelerator Reporter with Intelligence-based Formulation tool. SCARIF has three main contributions: (1) We first collect reported carbon cost data from server vendors and design statistic models to predict the embodied carbon cost so that users can get the embodied carbon cost for their server configurations. (2) We provide embodied carbon cost if users configure servers with accelerators including GPUs, and FPGAs. (3) By using case studies, we show that certain design choices of data center management might flip by the insight and observation from using SCARIF. Thus, SCARIF provides an opportunity for large-scale datacenter and hyperscaler design. We release SCARIF as an open-source tool at https://github.com/arc-research-lab/SCARIF. 
    more » « less