skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence for Kilometer‐Scale Biophysical Features at the Gulf Stream Front
Abstract Understanding the interplay of ocean physics and biology at the submesoscale and below (<30 km) is an ongoing challenge in oceanography. While poorly constrained, these scales may be of critical importance for understanding how changing ocean dynamics will impact marine ecosystems. Fronts in the ocean, regions where two disparate water masses meet and isopycnals become tilted toward vertical, are considered hotspots for biophysical interaction, but there is limited observational evidence at the appropriate scales to assess their importance. Fronts around western boundary currents like the Gulf Stream are of particular interest as these dynamic physical regions are thought to influence both productivity and composition of primary producers; however, how exactly this plays out is not well known. Using satellite data and 2 years of in situ observations across the Gulf Stream front near Cape Hatteras, North Carolina, we investigate how submesoscale frontal dynamics could affect biological communities and generate hotspots of productivity and export. We assess the seasonality and phenology of the region, generalize the kilometer‐scale structure of the front, and analyze 69 transects to assess two physical processes of potential biogeochemical importance: cold shelf filament subduction and high salinity Sargasso Sea obduction. We link these processes observationally to meanders in the Gulf Stream and discuss how cold filament subduction could be exporting carbon and how obduction of high salinity water from depth is connected with high chlorophyll‐a. Finally, we report on phytoplankton community composition in each of these features and integrate these observations into our understanding of frontal submesoscale dynamics.  more » « less
Award ID(s):
2224819 2033934
PAR ID:
10497029
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
129
Issue:
3
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Classic deformation theory includes parameters—divergence, total strain, and vorticity—that are invariant to changes in the coordinate system. However, these parameters are sometimes ambiguous with respect to characterizing how fronts are formed and maintained because the presence of a front imposes a reference coordinate system. To help remedy this ambiguity, we propose a framework in frontal coordinates based on along- and cross-front velocity gradients to better characterize frontal maintenance, which can also be used to define divergence and normal strain in frontal coordinates. The framework with these four parameters (along-, cross-front velocity gradients, divergence, and normal strain in frontal coordinate) defines eight characteristic flow types at a front, providing a complete characterization of the flow that strengthens or weakens a front. This framework highlights the importance of the “strain efficiency” concept, which unambiguously defines the contribution of total strain to frontogenesis. Two examples, one based on a realistic simulation of submesoscales in the northern Gulf of Mexico and the other based on an idealized model with similar flow characteristics, are provided to demonstrate how this framework can be used to enhance our understanding of frontal dynamics in submesoscale flows. 
    more » « less
  2. Submesoscale fronts with large horizontal buoyancy gradients and$$O(1)$$Rossby numbers are common in the upper ocean. These fronts are associated with large vertical transport and are hotspots for biological activity. Submesoscale fronts are susceptible to symmetric instability (SI) – a form of stratified inertial instability which can occur when the potential vorticity is of the opposite sign to the Coriolis parameter. Here, we use a weakly nonlinear stability analysis to study SI in an idealised frontal zone with a uniform horizontal buoyancy gradient in thermal wind balance. We find that the structure and energetics of SI strongly depend on the front strength, defined as the ratio of the horizontal buoyancy gradient to the square of the Coriolis frequency. Vertically bounded non-hydrostatic SI modes can grow by extracting potential or kinetic energy from the balanced front and the relative importance of these energy reservoirs depends on the front strength and vertical stratification. We describe two limiting behaviours as ‘slantwise convection’ and ‘slantwise inertial instability’ where the largest energy source is the buoyancy flux and geostrophic shear production, respectively. The growing linear SI modes eventually break down through a secondary shear instability, and in the process transport considerable geostrophic momentum. The resulting breakdown of thermal wind balance generates vertically sheared inertial oscillations and we estimate the amplitude of these oscillations from the stability analysis. We finally discuss broader implications of these results in the context of current parameterisations of SI. 
    more » « less
  3. Abstract Drake Passage is a key region for transport between the surface and interior ocean, but a mechanistic understanding of this exchange remains immature. Here, we present wintertime, submesoscale‐resolving hydrographic transects spanning the southern boundary of the Antarctic Circumpolar Current and the Polar Front (PF). Despite the strong surface wind and buoyancy forcing, a freshwater lens suppresses surface‐interior exchange south of the PF; ventilation is instead localized to the PF. Multiple lines of the analysis suggest submesoscale processes contribute to ventilation at the PF, including small‐scale, O(10 km), frontal structure in water mass properties below the mixed layer and modulation of a surface eddy diffusivity at sub‐50 km scales. These results show that ventilation is sensitive to both submesoscale properties near fronts and non‐local processes, for example, sea‐ice melt, that set stratification and mixed layer properties. This highlights the need for adaptive observing strategies to constrain Southern Ocean heat and carbon budgets. 
    more » « less
  4. Introduction Ocean fronts are moving ephemeral biological hotspots forming at the interface of cooler and warmer waters. In the open ocean, this is where marine organisms, ranging from plankton to mesopelagic fish up to megafauna, gather and where most fishing activities concentrate. Fronts are critical ecosystems so that understanding their spatio-temporal variability is essential not only for conservation goals but also to ensure sustainable fisheries. The Mozambique Channel (MC) is an ideal laboratory to study ocean front variability due to its energetic flow at sub-to-mesoscales, its high biodiversity and the currently debated conservation initiatives. Meanwhile, fronts detection relying solely on remotely-sensed Sea Surface Temperature (SST) cannot access aspects of the subsurface frontal activity that may be relevant for understanding ecosystem dynamics. Method In this study, we used the Belkin and O’Reilly Algorithm on remotely-sensed SST and hindcasts of a high-resolution nested ocean model to investigate the spatial and seasonal variability of temperature fronts at different depths in the MC. Results We find that the seasonally varying spatial patterns of frontal activity can be interpreted as resulting from main features of the mean circulation in the MC region. In particular, horizontally, temperature fronts are intense and frequent along continental shelves, in islands’ wakes, at the edge of eddies, and in the pathways of both North-East Madagascar Current (NEMC) and South-East Madagascar Current (SEMC). In austral summer, thermal fronts in the MC are mainly associated with the Angoche upwelling and seasonal variability of the Mozambique current. In austral winter, thermal fronts in the MC are more intense when the NEMC and the Seychelles-Chagos and South Madagascar upwelling cells intensify. Vertically, the intensity of temperature fronts peaks in the vicinity of the mean thermocline. Discussion Considering the marked seasonality of frontal activity evidenced here and the dynamical connections of the MC circulation with equatorial variability, our study calls for addressing longer timescales of variability to investigate how ocean ecosystem/front interactions will evolve with climate change. 
    more » « less
  5. Abstract We present and evaluate a deep learning first-guess front-identification system that identifies cold, warm, stationary, and occluded fronts. Frontal boundaries play a key role in the daily weather around the world. Human-drawn fronts provided by the National Weather Service’s Weather Prediction Center, Ocean Prediction Center, Tropical Analysis and Forecast Branch, and Honolulu Forecast Office are treated as ground-truth labels for training the deep learning models. The models are trained using ERA5 data with variables known to be important for distinguishing frontal boundaries, including temperature, equivalent potential temperature, and wind velocity and direction at multiple heights. Using a 250-km neighborhood over the contiguous U.S. domain, our best models achieve critical success index scores of 0.60 for cold fronts, 0.43 for warm fronts, 0.48 for stationary fronts, 0.45 for occluded fronts, and 0.71 using a binary classification system (front/no front), whereas scores over the full unified surface analysis domain were lower. For cold and warm fronts and binary classification, these scores significantly outperform prior baseline methods that utilize 250-km neighborhoods. These first-guess deep learning algorithms can be used by forecasters to locate frontal boundaries more effectively and expedite the frontal analysis process. Significance StatementFronts are boundaries that affect the weather that people experience daily. Currently, forecasters must identify these boundaries through manual analysis. We have developed an automated machine learning method for detecting cold, warm, stationary, and occluded fronts. Our automated method provides forecasters with an additional tool to expedite the frontal analysis process. 
    more » « less