skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigation of the adsorption/desorption mechanism of perfluoroalkyl substances on HLB-WAX extraction phases for microextraction
The C–F alkyl structural backbone of per- and polyfluoroalkyl substances makes this class of molecules resistant to heat and degradation, leading to their high persistence and mobility in the environment and bioaccumulation in the tissues of living organisms. In this study, 15 PFAS with an alkyl chain length from C4 to C14, currently monitored by the U.S. Environmental Protection Agency (EPA), were preconcentrated by solid-phase microextraction (SPME) and analyzed by liquid chromatography-tandem mass spectrometry. The adsorption and desorption mechanisms of PFAS onto ion-exchange extraction phases was evaluated to understand the extraction process of PFAS from various environmental matrices under different conditions. This was achieved using two SPME geometries, namely fibers and thin films. The use of thin films resulted in a twofold improvement in extraction efficiency compared to fibers, especially for the short-chain PFAS. Methanol:water (80:20, v/v) was chosen as the optimized desorption solution, with ammonium formate added to minimize carryover. Extraction time profiles for both SPME geometries showed faster equilibration with thin films (30 min) compared to fibers (90–120 min). The linear dynamic range obtained with this method using fibers and thin films ranged from 10 to 5000 ng L􀀀 1 and 2.5–5000 ng L􀀀 1, respectively, with acceptable accuracy (70–130%) and precision (<15%). LOD ranged within 2.5–10 ng L􀀀 1 for fibers and 0.01–0.25 ng L􀀀 1 for thin films. Investigating the factors affecting PFAS recovery in complex samples enabled the quantitative assessment of PFAS contamination in various environmental water samples such as seawater, melted snow and biospecimens like human plasma. A 96-SPME holder was used for validation, which is compatible with sampling in 96-well plates and ensures high throughput in the analysis of real samples. The total concentration of PFAS detected in seawater and snow was 51.3 ng L􀀀 1 and 16.4 ng L􀀀 1, respectively.  more » « less
Award ID(s):
2144591
PAR ID:
10497137
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Analytica Chimica Acta
Volume:
1260
Issue:
C
ISSN:
0003-2670
Page Range / eLocation ID:
341206
Subject(s) / Keyword(s):
Ion-exchange sorbents Solid phase microextraction Perfluoroalkyl substances
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Per- and polyfluoroalkyl substances (PFAS), an emerging class of toxic anthropogenic chemicals persistent in the environment, are currently regulated at the low part-per-trillion level worldwide in drinking water. Quantification and screening of these compounds currently rely primarily on liquid chromatography hyphenated to mass spectrometry (LC-MS). The growing need for quicker and more robust analysis in routine monitoring has been, in many ways, spearheaded by the advent of direct ambient mass spectrometry (AMS) technologies. Direct analysis in real time (DART), a plasma-based ambient ionization technique that permits rapid automated analysis, effectively ionizes a broad range of compounds, including PFAS. This work evaluates the performance of DART-MS for the screening and quantification of PFAS of different chemical classes, employing a central composite design (CCD) to better understand the interactions of DART parameters on their ionization. Furthermore, in-source fragmentation of the model PFAS was investigated based on the DART parameters evaluated. Preconcentration of PFAS from water samples was achieved by solid phase microextraction (SPME), and extracts were analyzed using the optimized DART-MS conditions, which allowed obtaining linear dynamic ranges (LDRs) within 10 and 5000 ng/L and LOQs of 10, 25, and 50 ng/L for all analytes. Instrumental analysis was achieved in less than 20 s per sample. 
    more » « less
  2. Abstract Land application of treated sewage sludge (also known as biosolids) is considered a sustainable route of disposal because it reduces waste loading into landfills while improving soil health. However, this waste management practice can introduce contaminants from biosolids, such as per- and polyfluoroalkyl substances (PFAS), into the environment. PFAS have been observed to be taken up by plants, accumulate in humans and animals, and have been linked to various negative health effects. There is limited information on the nature and amounts of PFAS introduced from biosolids that have undergone different treatment processes. Therefore, this study developed analytical techniques to improve the characterization of PFAS in complex biosolid samples. Different clean-up techniques were evaluated and applied to waste-activated sludge (WAS) and lime-stabilized primary solids (PS) prior to targeted analysis and suspect screening of biosolid samples. Using liquid chromatography with high-resolution mass spectrometry, a workflow was developed to achieve parallel quantitative targeted analysis and qualitative suspect screening. This study found that concentrations of individual PFAS (27 targeted analytes) can range from 0.6 to 84.6 ng/g in WAS (average total PFAS = 241.4 ng/g) and from 1.6 to 33.8 ng/g in PS (average total PFAS = 72.1 ng/g). The suspect screening workflow identified seven additional PFAS in the biosolid samples, five of which have not been previously reported in environmental samples. Some of the newly identified compounds are a short-chain polyfluorinated carboxylate (a PFOS replacement), a diphosphate ester (a PFOA precursor), a possible transformation product of carboxylate PFAS, and an imidohydrazide which contains a sulfonate and benzene ring. 
    more » « less
  3. Legacy and emerging per- and polyfluoroalkyl substances (PFAS) are widely detected in environmental and human samples because of their widespread use and resistance to degradation. Due to the increasing concern on health impacts of PFAS resulting from exposure to contaminated water, the development of novel materials to capture and remove PFAS from the environment is needed. Here, we present a self-assembling, fluorinated, zirconium-based metal–organic cage (F-ZrMOC) capable of capturing 37 different PFAS species, at an average of 82% removal from a solution that contains 400 ng/mL of each individual PFAS. The F-ZrMOC captured different classes of PFAS within 30 s, including perfluoroalkyl carboxylates, sulfonates, sulfonamides, ethoxylates, and fluorotelomer carboxylates/sulfonates/alcohols from water during in-vial, static, and flow through exposures (in which the F-ZrMOC is used as a solid phase extraction sorbent). Removal efficiency is higher for PFAS with chain lengths of seven carbons or higher; the presence of complex matrices such as untreated wastewater and groundwater samples did not significantly reduce the removal efficiencies for PFAS. The F-ZrMOC was characterized using 1H and 19F nuclear magnetic resonance (NMR) spectroscopy, and the stoichiometry of the synthesized cage was confirmed using Fourier transform-ion cyclotron resonance mass spectrometry. The surface area and pore size of F-ZrMOC were further determined by N2 and CO2 sorption measurements. 19F-NMR spectroscopy revealed that solvent plays an important role in the capture of PFAS; once the cages are in contact with methanol solution, captured PFAS are released. 
    more » « less
  4. null (Ed.)
    Microplastics (MP) are now considered ubiquitous across global aquatic environments. The ingestion of MP by fish and other marine vertebrates is well studied, but the ingestion of MP by marine invertebrates is not. Sponges (Phylum Porifera) are particularly understudied when it comes to MP ingestion, even though they are widely distributed across benthic habitats, can process large volumes of seawater, and can retain small particles within their water filtration systems. This study examines the presence of potential MP (PMP) in wild marine sponges and seawater collected in Bocas del Toro, Panamá. Subsurface seawater and tissue from six common Caribbean sponge species was collected in Saigon Bay, a heavily impacted, shallow-water coral reef. Seawater samples were filtered onto glass fiber filters to retain any PMP present and sponge tissue was digested with bleach, heated and filtered. Filters were examined using fluorescence microscopy to quantify PMP. An average of 107 ± 25 PMP L –1 was detected in seawater from Saigon Bay with particles ranging in size between 10 μm and ~3,000 μm. The number of PMP found in sponge tissue ranged between 6 ± 4 and 169 ± 71 PMP g –1 of dry tissue. Most particles found in sponge samples were very small (10–20 μm), but fibers greater than 5,000 μm were detected. Our results indicate that PMP exists within the tissues of the sponges we studied, but future studies should confirm the presence of MP in sponges using chemical analysis. Most importantly, the discrepancy between low levels of PMP in our sponge samples and high levels in the surrounding seawater highlights the potential for sponges to resist and/or egest MP. Finally, we provide a critical evaluation of our methods to improve their use in future MP work with benthic marine organisms. 
    more » « less
  5. Titanium dioxide (TiO2)/nitrogen-doped graphene (NG) nanocomposite is prepared via a solvent-free hydrothermal reaction. The resulting TiO2/NG materials exhibit a reduction of the band gap energy compared to pristine TiO2 from 3.27 eV to 2.69 eV. These materials are characterized by scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). To prepare biopolymer films with photocatalytic properties, TiO2 and NG are mixed with biodegradable chitosan and spin-coated on a silicon wafer. Film roughness and thickness are evaluated by atomic force microscopy (AFM). These films are then tested for ciprofloxacin photodegradation by irradiating with visible light. In comparison to the TiO2/chitosan films, the addition of NG substantially enhances photodegradation efficiency by up to 34% upon the addition of 5% w/w of NG. Furthermore, this film is shown to be a good substrate for biomarker detection using laser desorption ionization mass spectrometry (LDI-MS). In summary, this nanocomposite-biopolymer film provides good photocatalytic activity towards ciprofloxacin degradation and enhances the ionization efficiency of peptide biomarkers in LDI-MS owing to high efficiency of laser absorption/desorption. This nanocomposite film might be useful for environmental-related and medical application. 
    more » « less