skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Noncentrosymmetric Triangular Magnet CaMnTeO 6 : Strong Quantum Fluctuations and Role of s 0 versus s 2 Electronic States in Competing Exchange Interactions
Abstract Noncentrosymmetric triangular magnets offer a unique platform for realizing strong quantum fluctuations. However, designing these quantum materials remains an open challenge attributable to a knowledge gap in the tunability of competing exchange interactions at the atomic level. Here, a new noncentrosymmetric triangularS = 3/2 magnet CaMnTeO6is created based on careful chemical and physical considerations. The model material displays competing magnetic interactions and features nonlinear optical responses with the capability of generating coherent photons. The incommensurate magnetic ground state of CaMnTeO6with an unusually large spin rotation angle of 127°(1) indicates that the anisotropic interlayer exchange is strong and competing with the isotropic interlayer Heisenberg interaction. The moment of 1.39(1) µB, extracted from low‐temperature heat capacity and neutron diffraction measurements, is only 46% of the expected value of the static moment 3 µB. This reduction indicates the presence of strong quantum fluctuations in the half‐integer spinS = 3/2 CaMnTeO6magnet, which is rare. By comparing the spin‐polarized band structure, chemical bonding, and physical properties of AMnTeO6(A = Ca, Sr, Pb), how quantum‐chemical interpretation can illuminate insights into the fundamentals of magnetic exchange interactions, providing a powerful tool for modulating spin dynamics with atomically precise control is demonstrated.  more » « less
Award ID(s):
2227933 2145832 2050042
PAR ID:
10497266
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
36
Issue:
24
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A novel transition metal chalcohalide [Cr7S8(en)8Cl2]Cl3 ⋅ 2H2O, with [Cr7S8]5+dicubane cationic clusters, has been synthesized by a low temperature solvothermal method, using dimethyl sulfoxide (DMSO) and ethylenediamine (en) solvents. Ethylenediamine ligand exhibits bi‐ and monodentate coordination modes; in the latter case ethylenediamine coordinates to Cr atoms of adjacent clusters, giving rise to a 2D polymeric structure. Although magnetic susceptibility shows no magnetic ordering down to 1.8 K, a highly negative Weiss constant,θ=−224(2) K, obtained from Curie‐Weiss fit of inverse susceptibility, suggests strong antiferromagnetic (AFM) interactions betweenS=3/2 Cr(III) centers. Due to the complexity of the system with (2S+1)7=16384 microstates from seven Cr3+centers, a simplified model with only two exchange constants was used for simulations. Density‐functional theory (DFT) calculations yielded the two exchange constants to beJ1=−21.4 cm−1andJ2=−30.2 cm−1, confirming competing AFM coupling between the shared Cr3+center and the peripheral Cr3+ions of the dicubane cluster. The best simulation of the experimental data was obtained withJ1=−20.0 cm−1andJ2=−21.0 cm−1, in agreement with the slightly stronger AFM exchange within the triangles of the peripheral Cr3+ions as compared to the AFM exchange between the central and peripheral Cr3+ions. This compound is proposed as a synthon towards magnetically frustrated systems assembled by linking dicubane transition metal‐chalcogenide clusters into polymeric networks. 
    more » « less
  2. Abstract Recent demonstrations of moiré magnetism, featuring exotic phases with noncollinear spin order in the twisted van der Waals (vdW) magnet chromium triiodide CrI3, have highlighted the potential of twist engineering of magnetic (vdW) materials. However, the local magnetic interactions, spin dynamics, and magnetic phase transitions within and across individual moiré supercells remain elusive. Taking advantage of a scanning single-spin magnetometry platform, here we report observation of two distinct magnetic phase transitions with separate critical temperatures within a moiré supercell of small-angle twisted double trilayer CrI3. By measuring temperature-dependent spin fluctuations at the coexisting ferromagnetic and antiferromagnetic regions in twisted CrI3, we explicitly show that the Curie temperature of the ferromagnetic state is higher than the Néel temperature of the antiferromagnetic one by ~10 K. Our mean-field calculations attribute such a spatial and thermodynamic phase separation to the stacking order modulated interlayer exchange coupling at the twisted interface of moiré superlattices. 
    more » « less
  3. Motivated by the recent developments in moiré superlattices of van der Waals magnets and the desire to control the magnetic interactions of α-RuCl3, here we present a comprehensive theory of the long-range ordered magnetic phases of twisted bilayer α-RuCl3. Using a combination of first-principles calculations and atomistic simulations, we show that the stacking-dependent interlayer exchange gives rise to an array of magnetic phases that can be realized by controlling the twist angle. In particular, we discover a complex hexagonal domain structure in which multiple zigzag orders coexist. This multidomain order minimizes the interlayer energy while enduring the energy cost due to domain wall formation. Further, we show that quantum fluctuations can be enhanced across the phase transitions. Our results indicate that magnetic frustration due to stacking-dependent interlayer exchange in moiré superlattices can be exploited to tune quantum fluctuations and the magnetic ground state of α-RuCl3. 
    more » « less
  4. Abstract Owing to their overall low energy scales, flexible molecular architectures, and ease of chemical substitution, molecule-based multiferroics are extraordinarily responsive to external stimuli and exhibit remarkably rich phase diagrams. Even so, the stability and microscopic properties of various magnetic states in close proximity to quantum critical points are highly under-explored in these materials. Inspired by these opportunities, we combined pulsed-field magnetization, first-principles calculations, and numerical simulations to reveal the magnetic field–temperature (B–T) phase diagram of multiferroic (NH4)2FeCl5⋅H2O. In this system, a network of intermolecular hydrogen and halogen bonds creates a competing set of exchange interactions that generates additional structure in the phase diagram—both in the vicinity of the spin flop and near the 30 T transition to the fully saturated state. Consequently, the phase diagrams of (NH4)2FeCl5⋅H2O and its deuterated analog are much more complex than those of other molecule-based multiferroics. The entire series of coupled electric and magnetic transitions can be accessed with a powered magnet, opening the door to exploration and control of properties in this and related materials. 
    more » « less
  5. Moiré superlattices of twisted nonmagnetic two-dimensional (2D) materials are highly controllable platforms for the engineering of exotic correlated and topological states. Here, we report emerging magnetic textures in small-angle twisted 2D magnet chromium triiodide (CrI 3 ). Using single-spin quantum magnetometry, we directly visualized nanoscale magnetic domains and periodic patterns, a signature of moiré magnetism, and measured domain size and magnetization. In twisted bilayer CrI 3 , we observed the coexistence of antiferromagnetic (AFM) and ferromagnetic (FM) domains with disorder-like spatial patterns. In twisted double-trilayer CrI 3 , AFM and FM domains with periodic patterns appear, which is in good agreement with the calculated spatial magnetic structures that arise from the local stacking-dependent interlayer exchange interactions in CrI 3 moiré superlattices. Our results highlight magnetic moiré superlattices as a platform for exploring nanomagnetism. 
    more » « less