Abstract Eruptive mass loss likely produces the energetic outbursts observed from some massive stars before they become core-collapse supernovae (SNe). The resulting dense circumstellar medium may also cause the subsequent SNe to be observed as Type IIn events. The leading hypothesis of the cause of these outbursts is the response of the envelope of the red supergiant (RSG) progenitor to energy deposition in the months to years prior to collapse. Early theoretical studies of this phenomenon were limited to 1D, leaving the 3D convective RSG structure unaddressed. UsingFLASH's hydrodynamic capabilities, we explore the 3D outcomes by constructing convective RSG envelope models and depositing energies less than the envelope binding energies on timescales shorter than the envelope dynamical time deep within them. We confirm the 1D prediction of an outward-moving acoustic pulse steepening into a shock, unbinding the outermost parts of the envelope. However, we find that the initial 2–4 km s−1convective motions seed the intrinsic convective instability associated with the high-entropy material deep in the envelope, enabling gas from deep within the envelope to escape and increasing the amount of ejected mass compared to an initially “quiescent” envelope. The 3D models reveal a rich density structure, with column densities varying by ≈10× along different lines of sight. Our work highlights that the 3D convective nature of RSG envelopes impacts our ability to reliably predict the outburst dynamics, the amount, and the spatial distribution of the ejected mass associated with deep energy deposition.
more »
« less
Red supergiant candidates for multimessenger monitoring of the next Galactic supernova
ABSTRACT We compile a catalogue of 578 highly probable and 62 likely red supergiants (RSGs) of the Milky Way, which represents the largest list of Galactic RSG candidates designed for continuous follow-up efforts to date. We match distances measured by Gaia DR3, 2MASS photometry, and a 3D Galactic dust map to obtain luminous bright late-type stars. Determining the stars’ bolometric luminosities and effective temperatures, we compare to Geneva stellar evolution tracks to determine likely RSG candidates, and quantify contamination using a catalogue of Galactic AGB in the same luminosity-temperature space. We add details for common or interesting characteristics of RSG, such as multistar system membership, variability, and classification as a runaway. As potential future core-collapse supernova progenitors, we study the ability of the catalogue to inform the Supernova Early Warning System (SNEWS) coincidence network made to automate pointing, and show that for 3D position estimates made possible by neutrinos, the number of progenitor candidates can be significantly reduced, improving our ability to observe the progenitor pre-explosion and the early phases of core-collapse supernovae.
more »
« less
- PAR ID:
- 10497302
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 529
- Issue:
- 4
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 3630-3650
- Size(s):
- p. 3630-3650
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The core-collapse supernova (CCSN) is considered one of the most energetic astrophysical events in the universe. The early and prompt detection of neutrinos before (pre-SN) and during the supernova (SN) burst presents a unique opportunity for multi-messenger observations of CCSN events. In this study, we describe the monitoring concept and present the sensitivity of the system to pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton liquid scintillator detector currently under construction in South China.The real-time monitoring system is designed to ensure both prompt alert speed and comprehensive coverage of progenitor stars. It incorporates prompt monitors on the electronic board as well as online monitors at the data acquisition stage.Assuming a false alert rate of 1 per year, this monitoring system exhibits sensitivity to pre-SN neutrinos up to a distance of approximately 1.6 (0.9) kiloparsecs and SN neutrinos up to about 370 (360) kiloparsecs for a progenitor mass of 30 solar masses, considering both normal and inverted mass ordering scenarios.The pointing ability of the CCSN is evaluated by analyzing the accumulated event anisotropy of inverse beta decay interactions from pre-SN or SN neutrinos. This, along with the early alert, can play a crucial role in facilitating follow-up multi-messenger observations of the next galactic or nearby extragalactic CCSN.more » « less
-
ABSTRACT We present observations of SN 2020fqv, a Virgo-cluster type II core-collapse supernova (CCSN) with a high temporal resolution light curve from the Transiting Exoplanet Survey Satellite (TESS) covering the time of explosion; ultraviolet (UV) spectroscopy from the Hubble Space Telescope (HST) starting 3.3 d post-explosion; ground-based spectroscopic observations starting 1.1 d post-explosion; along with extensive photometric observations. Massive stars have complicated mass-loss histories leading up to their death as CCSNe, creating circumstellar medium (CSM) with which the SNe interact. Observations during the first few days post-explosion can provide important information about the mass-loss rate during the late stages of stellar evolution. Model fits to the quasi-bolometric light curve of SN 2020fqv reveal 0.23 M⊙ of CSM confined within 1450 R⊙ (1014 cm) from its progenitor star. Early spectra (<4 d post-explosion), both from HST and ground-based observatories, show emission features from high-ionization metal species from the outer, optically thin part of this CSM. We find that the CSM is consistent with an eruption caused by the injection of ∼5 × 1046 erg into the stellar envelope ∼300 d pre-explosion, potentially from a nuclear burning instability at the onset of oxygen burning. Light-curve fitting, nebular spectroscopy, and pre-explosion HST imaging consistently point to a red supergiant (RSG) progenitor with $$M_{\rm ZAMS}\approx 13.5\!-\!15 \, \mathrm{M}_{\odot }$$, typical for SN II progenitor stars. This finding demonstrates that a typical RSG, like the progenitor of SN 2020fqv, has a complicated mass-loss history immediately before core collapse.more » « less
-
Abstract We present high-cadence optical, ultraviolet (UV), and near-infrared data of the nearby ( D ≈ 23 Mpc) Type II supernova (SN) 2021yja. Many Type II SNe show signs of interaction with circumstellar material (CSM) during the first few days after explosion, implying that their red supergiant (RSG) progenitors experience episodic or eruptive mass loss. However, because it is difficult to discover SNe early, the diversity of CSM configurations in RSGs has not been fully mapped. SN 2021yja, first detected within ≈ 5.4 hours of explosion, shows some signatures of CSM interaction (high UV luminosity and radio and x-ray emission) but without the narrow emission lines or early light-curve peak that can accompany CSM. Here we analyze the densely sampled early light curve and spectral series of this nearby SN to infer the properties of its progenitor and CSM. We find that the most likely progenitor was an RSG with an extended envelope, encompassed by low-density CSM. We also present archival Hubble Space Telescope imaging of the host galaxy of SN 2021yja, which allows us to place a stringent upper limit of ≲ 9 M ☉ on the progenitor mass. However, this is in tension with some aspects of the SN evolution, which point to a more massive progenitor. Our analysis highlights the need to consider progenitor structure when making inferences about CSM properties, and that a comprehensive view of CSM tracers should be made to give a fuller view of the last years of RSG evolution.more » « less
-
Obtaining spectroscopic observations of the progenitors of core-collapse supernovae is often unfeasible, due to an inherent lack of knowledge as to what stars experience supernovae and when they will explode. In this Letter we present photometric and spectroscopic observations of the progenitor activity of SN 2023fyq before the He-rich progenitor explodes as a Type Ibn supernova. The progenitor of SN 2023fyq shows an exponential rise in flux prior to core collapse. Complex He Iemission line features are observed in the progenitor spectra, with a P Cygni-like profile, as well as an evolving broad base with velocities of the order of 10 000 km s−1. The luminosity and evolution of SN 2023fyq is consistent with a Type Ibn, reaching a peakr-band magnitude of −18.8 mag, although there is some uncertainty regarding the distance to the host, NGC 4388, which is located in the Virgo cluster. We present additional evidence of asymmetric He-rich material being present both prior to and after the explosion of SN 2023fyq, which suggests that this material survived the ejecta interaction. Broad [O I], C I, and the Ca IItriplet lines are observed at late phases, confirming that SN 2023fyq was a genuine supernova, rather than a non-terminal interacting transient. SN 2023fyq provides insight into the final moments of a massive star’s life, demonstrating that the progenitor is likely highly unstable before core collapse.more » « less
An official website of the United States government
