skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2125764

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Massive black hole binaries (MBHBs) produce gravitational waves (GWs) that are detectable with pulsar timing arrays. We determine the properties of the host galaxies of simulated MBHBs at the time they are producing detectable GW signals. The population of MBHB systems we evaluate is from theIllustriscosmological simulations taken in tandem with post processing semi-analytic models of environmental factors in the evolution of binaries. Upon evolving to the GW frequency regime accessible by pulsar timing arrays, we calculate the detection probability of each system using a variety of different values for pulsar noise characteristics in a plausible near-future International Pulsar Timing Array dataset. We find that detectable systems have host galaxies that are clearly distinct from the overall binary population and from most galaxies in general. With conservative noise factors, we find that host stellar metallicity, for example, peaks at 2 Z as opposed to the total population of galaxies which peaks at 0.6 Z . Additionally, the most detectable systems are much brighter in magnitude and more red in color than the overall population, indicating their likely identity as large ellipticals with diminished star formation. These results can be used to develop effective search strategies for identifying host galaxies and electromagnetic counterparts following GW detection by pulsar timing arrays. 
    more » « less
  2. Abstract Supermassive black hole binaries (SMBHBs) are thought to form in galaxy mergers, possessing the potential to produce electromagnetic (EM) radiation as well as gravitational waves (GWs) detectable with pulsar timing arrays (PTAs). Once GWs from individually resolved SMBHBs are detected, the identification of the host galaxy will be a major challenge due to the ambiguity in possible EM signatures and the poor localization capability of PTAs. To aid EM observations in choosing follow-up sources, we use NANOGrav’s galaxy catalog to quantify the number of plausible hosts in both realistic and idealistic scenarios. We outline a host identification pipeline that injects a single-source GW signal into a simulated PTA data set, recovers the signal using production-level techniques, quantifies the localization region and number of galaxies contained therein, and finally imposes cuts on the galaxies using parameter estimates from the GW search. In an ideal case, the 90% credible areas span 29–241 deg2, containing about 14–341 galaxies. After cuts, the number of galaxies remaining ranges from 22 at worst to one true host at best. In a realistic case, these areas range from 287 to 530 deg2and enclose about 285–1238 galaxies. After cuts, the number of galaxies is 397 at worst and 27 at best. While the signal-to-noise ratio is the primary determinant of the localization area of a given source, we find that the area is also influenced by the proximity to nearby pulsars on the sky and the binary chirp mass. 
    more » « less
  3. Abstract A population of compact object binaries emitting gravitational waves that are not individually resolvable will form a stochastic gravitational-wave signal. While the expected spectrum over population realizations is well known from Phinney, its higher-order moments have not been fully studied before or computed in the case of arbitrary binary evolution. We calculate analytic scaling relationships as a function of gravitational-wave frequency for the statistical variance, skewness, and kurtosis of a stochastic gravitational-wave signal over population realizations due to finite source effects. If the time derivative of the binary orbital frequency can be expressed as a power law in frequency, we find that these moment quantities also take the form of power-law relationships. We also develop a numerical population synthesis framework against which we compare our analytic results, finding excellent agreement. These new scaling relationships provide physical context to understanding spectral fluctuations in a gravitational-wave background signal and may provide additional information that can aid in explaining the origin of the nanohertz-frequency signal observed by pulsar timing array campaigns. 
    more » « less
  4. Abstract We present an analysis searching for dual active galactic nuclei (AGN) among 62 high-redshift (2.5 <z< 3.5) X-ray sources selected from the X-UDS, AEGIS-XD, CDF-S, and COSMOS-Legacy Chandra surveys. We aim to quantify the frequency of dual AGN in the high-redshift Universe, which holds implications for black hole merger timescales and low-frequency gravitational wave detection rates. We analyze each X-ray source using BAYMAX, an analysis tool that calculates the Bayes factor for whether a given archival Chandra AGN is more likely a single or dual point source. We find no strong evidence for dual AGN in any individual source in our sample. We increase our sensitivity to search for dual AGN across the sample by comparing our measured distribution of Bayes factors to that expected from a sample composed entirely of single point sources and find no evidence for dual AGN in the sample distribution. Although our analysis utilizes one of the largest Chandra catalogs of high-zX-ray point sources available to study, the findings remain limited by the modest number of sources observed at the highest spatial resolution with Chandra and the typical count rates of the detected sources. Our nondetection allows us to place an upper limit on the X-ray dual AGN fraction at 2.5 <z< 3.5 of 4.8% at the 95% confidence level. Expanding substantially on these results at X-ray wavelengths will require future surveys spanning larger sky areas and extending to fainter fluxes than has been possible with Chandra. We illustrate the potential of the AXIS mission concept in this regard. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  5. ABSTRACT We assess the possibility of detecting both eccentricity and gas effects (migration and accretion) in the gravitational wave (GW) signal from LISA massive black hole binaries at redshift $z=1$. Gas induces a phase correction to the GW signal with an effective amplitude ($$C_{\rm g}$$) and a semimajor axis dependence (assumed to follow a power-law with slope $$n_{\rm g}$$). We use a complete model of the LISA response and employ a gas-corrected post-Newtonian inspiral-only waveform model TaylorF2Ecc. By using the Fisher formalism and Bayesian inference, we constrain $$C_{\rm g}$$ together with the initial eccentricity $$e_0$$, the total redshifted mass $$M_z$$, the primary-to-secondary mass ratio q, the dimensionless spins $$\chi _{1,2}$$ of both component BHs, and the time of coalescence $$t_c$$. We find that simultaneously constraining $$C_{\rm g}$$ and $$e_0$$ leads to worse constraints on both parameters with respect to when considered individually. For a standard thin viscous accretion disc around $$M_z=10^5~{\rm M}_{\odot }$$, $q=8$, $$\chi _{1,2}=0.9$$, and $$t_c=4$$ years MBHB, we can confidently measure (with a relative error of $$\lt 50$$ per cent) an Eddington ratio $${\rm f}_{\rm Edd}\sim 0.1$$ for a circular binary and $${\rm f}_{\rm Edd}\sim 1$$ for an eccentric system assuming $$\mathcal {O}(10)$$ stronger gas torque near-merger than at the currently explored much-wider binary separations. The minimum measurable eccentricity is $$e_0\gtrsim 10^{-2.75}$$ in vacuum and $$e_0\gtrsim 10^{-2}$$ in gas. A weak environmental perturbation ($${\rm f}_{\rm Edd}\lesssim 1$$) to a circular binary can be mimicked by an orbital eccentricity during inspiral, implying that an electromagnetic counterpart would be required to confirm the presence of an accretion disc. 
    more » « less
    Free, publicly-accessible full text available July 27, 2025
  6. Abstract The cosmic merger history of supermassive black hole binaries (SMBHBs) is expected to produce a low-frequency gravitational wave background (GWB). Here we investigate how signs of the discrete nature of this GWB can manifest in pulsar timing arrays (PTAs) through excursions from, and breaks in, the expected f GW 2 / 3 power law of the GWB strain spectrum. To do this, we create a semianalytic SMBHB population model, fit to North American Nanohertz Observatory for Gravitational Waves (NANOGrav’s) 15 yr GWB amplitude, and with 1000 realizations, we study the populations’ characteristic strain and residual spectra. Comparing our models to the NANOGrav 15 yr spectrum, we find two interesting excursions from the power law. The first, at 2 nHz, is below our GWB realizations with ap-value significancep= 0.05–0.06 (≈1.8σ–1.9σ). The second, at 16 nHz, is above our GWB realizations withp= 0.04–0.15 (≈1.4σ–2.1σ). We explore the properties of a loud SMBHB that could cause such an excursion. Our simulations also show that the expected number of SMBHBs decreases by 3 orders of magnitude, from ∼106to ∼103, between 2 and 20 nHz. This causes a break in the strain spectrum as the stochasticity of the background breaks down at 26 19 + 28 nHz , consistent with predictions pre-dating GWB measurements. The diminished GWB signal from SMBHBs at frequencies above the 26 nHz break opens a window for PTAs to detect continuous GWs from individual SMBHBs or GWs from the early Universe. 
    more » « less
  7. ABSTRACT We explore the eccentricity measurement threshold of Laser Interferometer Space Antenna (LISA) for gravitational waves radiated by massive black hole binaries (MBHBs) with redshifted BH masses Mz in the range 104.5–107.5 M⊙ at redshift z = 1. The eccentricity can be an important tracer of the environment where MBHBs evolve to reach the merger phase. To consider LISA’s motion and apply the time delay interferometry, we employ the lisabeta software and produce year-long eccentric waveforms using the inspiral-only post-Newtonian model taylorf2ecc. We study the minimum measurable eccentricity (emin, defined one year before the merger) analytically by computing matches and Fisher matrices, and numerically via Bayesian inference by varying both intrinsic and extrinsic parameters. We find that emin strongly depends on Mz and weakly on mass ratio and extrinsic parameters. Match-based signal-to-noise ratio criterion suggest that LISA will be able to detect emin ∼ 10−2.5 for lighter systems (Mz ≲ 105.5 M⊙) and ∼10−1.5 for heavier MBHBs with a 90 per cent confidence. Bayesian inference with Fisher initialization and a zero noise realization pushes this limit to emin ∼ 10−2.75 for lower-mass binaries, assuming a <50 per cent relative error. Bayesian inference can recover injected eccentricities of 0.1 and 10−2.75 for a 105 M⊙ system with an ∼10−2 per cent and an ∼10 per cent relative errors, respectively. Stringent Bayesian odds criterion ($$\ln {\mathcal {B}}\gt 8$$) provides nearly the same inference. Both analytical and numerical methodologies provide almost consistent results for our systems of interest. LISA will launch in a decade, making this study valuable and timely for unlocking the mysteries of the MBHB evolution. 
    more » « less
  8. Abstract The millisecond pulsar J1713+0747 underwent a sudden and significant pulse shape change between 2021 April 16 and 17 (MJDs 59320 and 59321). Subsequently, the pulse shape gradually recovered over the course of several months. We report the results of continued multifrequency radio observations of the pulsar made using the Canadian Hydrogen Intensity Mapping Experiment and the 100 m Green Bank Telescope in a 3 yr period encompassing the shape change event, between 2020 February and 2023 February. As of 2023 February, the pulse shape had returned to a state similar to that seen before the event, but with measurable changes remaining. The amplitude of the shape change and the accompanying time-of-arrival residuals display a strong nonmonotonic dependence on radio frequency, demonstrating that the event is neither a glitch (the effects of which should be independent of radio frequency,ν) nor a change in dispersion measure alone (which would produce a delay proportional toν−2). However, it does bear some resemblance to the two previous “chromatic timing events” observed in J1713+0747, as well as to a similar event observed in PSR J1643−1224 in 2015. 
    more » « less
  9. Abstract To facilitate new studies of galaxy-merger-driven fueling of active galactic nuclei (AGNs), we present a catalog of 387 AGNs that we have identified in the final population of over 10,000z< 0.15 galaxies observed by the Sloan Digital Sky Survey-IV (SDSS-IV) integral field spectroscopy survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). We selected the AGNs via mid-infrared Wide-field Infrared Survey Explorer colors, Swift/Burst Alert Telescope ultra-hard X-ray detections, NRAO Very Large Array Sky Survey and Faint Images of the Radio Sky at Twenty centimeters radio observations, and broad emission lines in SDSS spectra. By combining the MaNGA AGN catalog with a new SDSS catalog of galaxy mergers that were identified based on a suite of hydrodynamical simulations of merging galaxies, we study the link between galaxy mergers and nuclear activity for AGNs above a limiting bolometric luminosity of 1044.4erg s−1. We find an excess of AGNs in mergers, relative to nonmergers, for galaxies with stellar mass ∼1011M, where the AGN excess is somewhat stronger in major mergers than in minor mergers. Further, when we combine minor and major mergers and sort by merger stage, we find that the highest AGN excess occurs in post-coalescence mergers in the highest-mass galaxies. However, we find no evidence of a correlation between galaxy mergers and AGN luminosity or accretion rate. In summary, while galaxy mergers overall do appear to trigger or enhance AGN activity more than nonmergers, they do not seem to induce higher levels of accretion or higher luminosities. We provide the MaNGA AGN Catalog and the MaNGA Galaxy Merger Catalog for the community here. 
    more » « less
  10. ABSTRACT Short-period Galactic white dwarf binaries detectable by Laser Interferometer Space Antenna are the only guaranteed persistent sources for multimessenger gravitational-wave astronomy. Large-scale surveys in the 2020s present an opportunity to conduct preparatory science campaigns to maximize the science yield from future multimessenger targets. The Nancy Grace Roman Space Telescope Galactic Bulge Time-Domain Survey will (in its Reference Survey design) image seven fields in the Galactic Bulge approximately 40 000 times each. Although the Reference Survey cadence is optimized for detecting exoplanets via microlensing, it is also capable of detecting short-period white dwarf binaries. In this paper, we present forecasts for the number of detached short-period binaries the Roman Galactic Bulge Time-Domain Survey will discover and the implications for the design of electromagnetic surveys. Although population models are highly uncertain, we find a high probability that the baseline survey will detect of the order of ∼5 detached white dwarf binaries. The Reference Survey would also have a $${\gtrsim} 20\,{\rm per\,cent}$$ chance of detecting several known benchmark white dwarf binaries at the distance of the Galactic Bulge. 
    more » « less