skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: UAS-Based Radio Frequency Interference Localization Using Power Measurements
This paper describes the development, implementation, and testing of a GNSS jammer localizer using power measurement profiles collected during un-crewed aerial system (UAS) fly-bys. A linearized measurement equation based on the Friis power transmission formula is derived in which RF channel propagation parameters are grouped into a single parameter for estimation. Synchronized power and UAS position measurements are processed in a batch-type sequential non-linear least squares algorithm for simultaneous estimation of static jammer position and received power model parameters. We develop a low size, weight, power, and cost (SWAP-C) quad-rotor UAS test bed that can collect and time-stamp power measurements with UAS position. Since GNSS jamming is illegal, a LoRa 868 MHz transmitter is used as a surrogate GNSS jammer during field testing – providing Received Signal Strength Indicator (RSSI) measurements to the LoRa receiver onboard the UAS. Testing is conducted at the Virginia Tech Kentland Experimental Aerial Systems Lab, where emitter localization is evaluated for three different trajectories. Experimental performance analysis suggests that meter-level localization accuracy is achievable with prior knowledge on source location and by accounting for antenna gain pattern variations over time in the estimation process with a first order Gauss Markov Process.  more » « less
Award ID(s):
2137159
PAR ID:
10497901
Author(s) / Creator(s):
; ; ; ;
Corporate Creator(s):
Editor(s):
ION ITM
Publisher / Repository:
ION ITM
Date Published:
Journal Name:
Proceedings of the 2024 International Technical Meeting, ION ITM 2024
Edition / Version:
1
Page Range / eLocation ID:
1169 to 1183
Subject(s) / Keyword(s):
Jammer, GNSS
Format(s):
Medium: X Size: 1MB Other: PDF
Size(s):
1MB
Location:
Long Beach, California
Sponsoring Org:
National Science Foundation
More Like this
  1. Weather, winds, thermals, and turbulence pose an ever-present challenge to small UAS. These challenges become magnified in rough terrain and especially within urban canyons. As the industry moves towards Beyond Visual Line of Sight (BVLOS) and fully autonomous operations, resilience to weather perturbations will be key. As the human decision-maker is removed from the in-situ environment, producing control systems that are robust will be paramount to the preservation of any Airspace System. Safety requirements and regulations require quantifiable performance metrics to guarantee a safe aerial environment with ever- increasing traffic. In this regards, the effect of wind and weather disturbances on a UAS and its ability to reject these disturbances present some unique concerns. Currently, drone manufacturers and operators rely on outdoor testing during windy days (or in windy locations) and onboard logging to evaluate and improve the flight worthiness, reliability and perturbation rejection capability of their vehicles. Waiting for the desired weather or travelling to a windier location is cost- and time-inefficient. Moreover, the conditions found on outdoor test sites are difficult to quantify and repeatability is non-existent. To address this situation, a novel testing methodology is proposed, combining artificial wind generation thanks to a multi-fan array wind generator (windshaper), coherent GNSS signal generation and accurate tracking of the test subject thanks to motion capture cameras. In this environment, the drone being tested can fly freely, follow missions and experience wind perturbations whilst staying in a modest indoor volume. By coordinating the windshaper, the motion tracking feedback and the position emulated by the GNSS signal generator with the drone’s mission profile, it was demonstrated that outdoor flight conditions can be reliably recreated in a controlled and repeatable environment. Specifically, thanks to real-time update of the position simulated by the GNSS signal generator, it was possible to demonstrate that the drone’s perception of the situation is similar to a corresponding mission being executed outdoor. In this work, the drone was subjected to three distinct flight cases: (1) hover in 2 m s−1 wind, (2) forward flight at 2 m s−1 without wind and (3) forward flight at 2 m s−1 with 2 m s−1 headwind. In each case, it could be demonstrated that by using indoor GNSS signal simulation and wind generation, the drone displays the characteristics of a 20 m move forward, while actually staying stationary in the test volume, within ±1 m. Further development of this methodology opens the door for fully integrated hardware-in- the-loop simulation of drone flight operations. 
    more » « less
  2. We present a model-based approach to estimate the vertical profile of horizontal wind velocity components using motion perturbations of a multirotor unmanned aircraft system (UAS) in both hovering and steady ascending flight. The state estimation framework employed for wind estimation was adapted to a set of closed-loop rigid body models identified for an off-the-shelf quadrotor. The quadrotor models used for wind estimation were characterized for hovering and steady ascending flight conditions ranging between 0 and 2 m/s. The closed-loop models were obtained using system identification algorithms to determine model structures and estimate model parameters. The wind measurement method was validated experimentally above the Virginia Tech Kentland Experimental Aircraft Systems Laboratory by comparing quadrotor and independent sensor measurements from a sonic anemometer and two SoDAR instruments. Comparison results demonstrated quadrotor wind estimation in close agreement with the independent wind velocity measurements. However, horizontal wind velocity profiles were difficult to validate using time-synchronized SoDAR measurements. Analysis of the noise intensity and signal-to-noise ratio of the SoDARs proved that close-proximity quadrotor operations can corrupt wind measurement from SoDARs, which has not previously been reported. 
    more » « less
  3. Abstract: The vast amount of spectrum available for millimeter wave (mmWave) wireless communication systems will support accurate real-time positioning concurrent with communication signaling. This paper demonstrates that accurate estimates of the position of an unknown node can be determined using estimates of time of arrival (ToA), angle of arrival (AoA), as well as data fusion or machine learning. Real-world data at 28 GHz and 73 GHz is used to show that AoA-based localization techniques will need to be augmented with other positioning techniques. The fusion of AoA-based positioning with received power measurements for RXs in an office which has dimensions of 35 m by 65.5 m is shown to provide location accuracies ranging from 16 cm to 3.25 m, indicating promise for accurate positioning capabilities in future networks. Received signal strength intensity (RSSI) based positioning techniques that exploit the ordering of the received power can be used to determine rough estimates of user position. Prediction of received signal characteristics is done using 2-D ray tracing. 
    more » « less
  4. null (Ed.)
    Power system state estimation is an important component of the status and healthiness of the underlying electric power grid real-time monitoring. However, such a component is prone to cyber-physical attacks. The majority of research in cyber-physical power systems security focuses on detecting measurements False-Data Injection attacks. While this is important, measurement model parameters are also a most important part of the state estimation process. Measurement model parameters though, also known as static-data, are not monitored in real-life applications. Measurement model solutions ultimately provide estimated states. A state-of-the-art model presents a two-step process towards simultaneous false-data injection security: detection and correction. Detection steps are χ2 statistical hypothesis test based, while correction steps consider the augmented state vector approach. In addition, the correction step uses an iterative solution of a relaxed non-linear model with no guarantee of optimal solution. This paper presents a linear programming method to detect and correct cyber-attacks in the measurement model parameters. The presented bi-level model integrates the detection and correction steps. Temporal and spatio characteristics of the power grid are used to provide an online detection and correction tool for attacks pertaining the parameters of the measurement model. The presented model is implemented on the IEEE 118 bus system. Comparative test results with the state-of-the-art model highlight improved accuracy. An easy-to-implement model, built on the classical weighted least squares solution, without hard-to-derive parameters, highlights potential aspects towards real-life applications. 
    more » « less
  5. NA (Ed.)
    Unmanned Aerial Systems have become ubiquitous and are now widely used in commercial, consumer, and military applications. Their widespread use is due to a combination of their low cost, high capability, and ability to perform tasks and go places that are not easy or safe for humans. Most UAS platforms are dependent on Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS), to provide positioning information for navigation and flight control. Without reliable GPS signals, the flight path cannot be trusted, and flight safety cannot be assured. However, GPS is vulnerable to several types of malicious attacks, including jamming, spoofing, or physical attacks on the GPS constellation itself. Additionally, there are environments in which GPS reception is not always possible, a key example being urban canyon areas where line-of-site to the GPS satellite constellation may be blocked or obscured by large obstacles such as buildings. Numerous methods have been proposed for position estimation in GPS denied environments. However, these methods have significant limitations and typically exhibit poor performance in certain environments and scenarios. This paper analyzes the strengths and weaknesses of existing alternate positioning methods and describes a framework where multiple positioning solutions are jointly employed to construct an optimal position estimate. The proposed framework aims to reduce computation complexity and yield good positioning performance across a wide variety of environments. 
    more » « less