skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ambiguous stability of glaciers at bed peaks
Abstract Increasing ice flux from glaciers retreating over deepening (retrograde) bed topography has been implicated in the recent acceleration of mass loss from the Greenland and Antarctic ice sheets. We show in observations that some glaciers have remained at peaks in bed topography without retreating despite enduring significant changes in climate. Observations also indicate that some glaciers which persist at bed peaks undergo sudden retreat years or decades after the onset of local ocean or atmospheric warming. Using model simulations, we show that persistence of a glacier at a bed peak is caused by ice slowing as it flows up a reverse-sloping bed to the peak. Persistence at bed peaks may lead to two very different future behaviors for a glacier: one where it persists at a bed peak indefinitely, and another where it retreats from the bed peak after potentially long delays following climate forcing. However, it is nearly impossible to distinguish which of these two future behaviors will occur from current observations. We conclude that inferring glacier stability from observations of persistence obscures our true commitment to future sea-level rise under climate change. We recommend that further research is needed on seemingly stable glaciers to determine their likely future.  more » « less
Award ID(s):
1745043
PAR ID:
10498190
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Glaciology
Volume:
68
Issue:
272
ISSN:
0022-1430
Page Range / eLocation ID:
1177 to 1184
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent observations indicate that many marine‐terminating glaciers in Greenland and Antarctica are currently retreating and thinning, potentially due to long‐term trends in climate forcing. In this study, we describe a simple two‐stage model that accurately emulates the response to external forcing of marine‐terminating glaciers simulated in a spatially extended model. The simplicity of the model permits derivation of analytical expressions describing the marine‐terminating glacier response to forcing. We find that there are two time scales that characterize the stable glacier response to external forcing, a fast time scale of decades to centuries, and a slow time scale of millennia. These two time scales become unstable at different thresholds of bed slope, indicating that there are distinct slow and fast forms of the marine ice sheet instability. We derive simple expressions for the approximate magnitude and transient evolution of the stable glacier response to external forcing, which depend on the equilibrium glacier state and the strength of nonlinearity in forcing processes. The slow response rate of marine‐terminating glaciers indicates that current changes at some glaciers are set to continue and accelerate in coming centuries in response to past climate forcing and that the current extent of change at these glaciers is likely a small fraction of the future committed change caused by past climate forcing. Finally, we find that changing the amplitude of natural fluctuations in some nonlinear forcing processes, such as ice shelf calving, changes the equilibrium glacier state. 
    more » « less
  2. null (Ed.)
    Abstract Airborne radio-echo sounding (RES) surveys are widely used to measure ice-sheet bed topography. Measuring bed topography as accurately and widely as possible is of critical importance to modelling ice dynamics and hence to constraining better future ice response to climate change. Measurement accuracy of RES surveys is influenced both by the geometry of bed topography and the survey design. Here we develop a novel approach for simulating RES surveys over glaciated terrain, to quantify the sensitivity of derived bed elevation to topographic geometry. Furthermore, we investigate how measurement errors influence the quantification of glacial valley geometry. We find a negative bias across RES measurements, where off-nadir return measurement error is typically −1.8 ± 11.6 m. Topographic highlands are under-measured an order of magnitude more than lowlands. Consequently, valley depth and cross-sectional area are largely under-estimated. While overall estimates of ice thickness are likely too high, we find large glacier valley cross-sectional area to be under-estimated by −2.8 ± 18.1%. Therefore, estimates of ice flux through large outlet glaciers are likely too low when this effect is not taken into account. Additionally, bed mismeasurements potentially impact our appreciation of outlet-glacier stability. 
    more » « less
  3. Abstract Recent acceleration and thinning of Thwaites Glacier, West Antarctica, motivates investigation of the controls upon, and stability of, its present ice-flow pattern. Its eastern shear margin separates Thwaites Glacier from slower-flowing ice and the southern tributaries of Pine Island Glacier. Troughs in Thwaites Glacier’s bed topography bound nearly all of its tributaries, except along this eastern shear margin, which has no clear relationship with regional bed topography along most of its length. Here we use airborne ice-penetrating radar data from the Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA) to investigate the nature of the bed across this margin. Radar data reveal slightly higher and rougher bed topography on the slower-flowing side of the margin, along with lower bed reflectivity. However, the change in bed reflectivity across the margin is partially explained by a change in bed roughness. From these observations, we infer that the position of the eastern shear margin is not strongly controlled by local bed topography or other bed properties. Given the potential for future increases in ice flux farther downstream, the eastern shear margin may be vulnerable to migration. However, there is no evidence that this margin is migrating presently, despite ongoing changes farther downstream. 
    more » « less
  4. Globally, glaciers are shrinking in response to climate change, with implications for global sea level rise as well as downstream ecosystems and water resources. Sliding at the ice-bed interface (basal motion) provides a mechanism for glaciers to respond rapidly to climate change. While the short-term dynamics of glacier basal motion (< 10 years) have received substantial attention, little is known about how basal motion and its sensitivity to subglacial hydrology changes over long (> 50 year) timescales – this knowledge is required for accurate prediction of future glacier change. We compare historical data with modern estimates from field-collected and remotely-sensed data at Athabasca Glacier and show that, between 1961 and 2019, the glacier thinned by 51 meter ( - 18 %). However, a concurrent increase in surface slope results in minimal change in the average driving stress (-10 kilopascal, - 7%). These geometric changes coincide with a uniform surface slow down of surface velocity (-15 meter a-1, -45%). Historical observations and simplified ice modeling suggest that declining basal motion accounts for most of this slow down (63 % at a minimum). A decline in basal motion can be explained by increasing basal friction resulting from geometric change in addition to increasing meltwater flux through an efficient subglacial hydrologic system. There is some evidence that changes in basal motion in the overdeepened reach are responsible for slowing basal motion several km up-glacier. These results highlight the need to include time-varying dynamics of basal motion in glacier models and analyses. These findings suggest declining basal motion may reduce the flux of ice to lower elevations, helping to mitigate glacier mass loss in a warming climate. 
    more » « less
  5. Abstract Jakobshavn Isbræ, a major outlet glacier in Greenland, lost its protective ice shelf in 2002 and has been speeding up and retreating since. We image its grounding line for the first time with a terrestrial radar interferometer deployed in 2016 and detect its migration at tidal frequencies. The southern half of the glacier develops a floating section (3 km × 3 km) that migrates in phase with the tidal difference, up to a distance of 2.8 km, far more than previously expected. We attribute the migration to kilometer‐scale seawater intrusions, 10–20 cm in height, with the tide. The intrusions reveal that the glacier bed may be up to 800 m deeper than expected on the south side, which illustrates that our knowledge of bed topography remains limited for this glacier. We expect seawater intrusions to cause rapid melt of basal ice and play a major role in the glacier evolution. 
    more » « less